Advertisement

Endocrine Disruption in the Siberian Sturgeon Acipenser baerii Fed with a Soy-Containing Diet

  • Catherine Bennetau-Pelissero
  • Françoise Le Menn
Chapter

Abstract

Under the South-West climate conditions, the fish reproductive maturity was reached within 6–8 years allowing the development of a local caviar production. While studying the reproductive physiology of this fish, an estrogenic endocrine disruption was discovered. We managed showing that it was mainly due to soy-based diet containing estrogenic isoflavones. Because the rainbow trout reared in the same conditions did not exhibit such a disruption, we studied the effects of soy isoflavones at different steps of the estrogen endocrine pathways in both species. We managed to show that sturgeon was 50 times more sensitive to estrogenic soy isoflavones than trout. We also showed that this difference of sensitivity was not linked to differences at the estradiol synthesis step nor at the estradiol blood transport step. It was neither due to differences at the estradiol receptor levels nor at the liver cell level. The 50 times difference of sensitivity between the two species was linked to a difference in isoflavone bioavailability due to different xenobiotics detoxifying efficiency of the liver. Genistein, the main soy estrogenic compound, was shown to exhibit deleterious effect on trout reproduction. Until now the effect of this compound and of others from soy is still unknown on sturgeon reproduction due to the late reproductive maturity of this species. Studies are required to check for better reproductive efficiency of this species in the French fish-farm conditions.

Keywords

Siberian sturgeon Vitellogenin Estradiol Phytoestrogens Soy Metabolism Estradiol receptor Aromatase Hepatocyte Steroid- binding protein Fish reproduction 

References

  1. Akimova NV (1985) Gametogenesis and sexual cycles of Siberian sturgeon in wild and experimental condition. In: Peculiarities in the cycle of reproduction of fish under different latitude conditions. Sciences Edition, pp 111–122Google Scholar
  2. Akimova NB, Malyutin VS, Smolianov V et al (1979) Growth and gametogenesis of the Siberian sturgeon (Acipenser baeri, Brandt) under experimental and natural conditions. Proceedings of the 7th Japan Soviet. Joint Sump. Aquaculture. 1978, Tokyo, 179–183Google Scholar
  3. Arukwe A, Goksøyr A (2003) Eggshell and egg yolk proteins in fish: hepatic proteins for the next generation: oogenetic, population, and evolutionary implications of endocrine disruption. Comp Hepatol 2(1):4–25CrossRefGoogle Scholar
  4. Bagheri T, Imanpoor MR, Jafari V et al (2013) Reproductive impairment and endocrine disruption in goldfish by feeding diets containing soybean meal. Anim Reprod Sci 139(1–4):136–144CrossRefGoogle Scholar
  5. Baroiller JF, Fostier A, Zohar Y, Marcuzzi O (1987) The metabolic clearance rate of estradiol-17 beta in rainbow trout, Salmo gairdneri R., estimated by both single injection and constant infusion methods: increase during oocyte maturation. Gen Comp Endocrinol 66(1):85–94CrossRefGoogle Scholar
  6. Beato M, Chalepakis G, Schauer M et al (1989) DNA regulatory elements for steroid hormones. J Steroid Biochem 32(5):737–747CrossRefGoogle Scholar
  7. Bennetau-Pelissero C, Kaushik S et al (1998) Effects of soy and of phytoestrogens on vitellogenesis and steroid endocrinology of the rainbow trout and of the Siberian sturgeon. In vivo and in vitro approaches. Bull Fra Pisc 350–351:571–583Google Scholar
  8. Bennetau-Pelissero C, Breton B, Bennetau B et al (2001) Effect of genistein-enriched diets on the endocrine process of gametogenesis and on reproduction efficiency of the rainbow trout Oncorhynchus mykiss. Gen Comp Endocrinol 121(2):173–187CrossRefGoogle Scholar
  9. Bennetau-Pelissero C, Breton B, Bennetau B et al (2002) Influence of a diet enriched in genistein on sex hormone and the rainbow trout reproduction. Rev Med Vet 153(7):513–516Google Scholar
  10. Birstein VJ, Poletaev AI, Goncharov BF (1993) The DNA content in Eurasian sturgeon species determined by flox cytodensitometry. Cytometry 14:277–383CrossRefGoogle Scholar
  11. Braden AWH, Hart NK, Lamberton JA (1967) The estrogenic activity and metabolism of certain isoflavones in sheep. Aust J Agric Res 18:335–348CrossRefGoogle Scholar
  12. Brown AC, Stevenson LM, Leonard HM et al (2014) Phytoestrogens β-Sitosterol and Genistein have limited effects on reproductive endpoints in a female fish, Betta splendens. Biomed Res Int. doi:10.1155/2014/681396CrossRefGoogle Scholar
  13. Cassidy A, Bingham S, Setchell K (1995) Biological effects of isoflavones in young women: importance of the chemical composition of soyabean products. Br J Nutr 74(4):587–601CrossRefGoogle Scholar
  14. Cheshenko K, Pakdel F, Segner H et al (2008) Interference of endocrine disrupting chemicals with aromatase CYP19 expression or activity, and consequences for reproduction of teleost fish. Gen Comp Endocrinol 155(1):31–62CrossRefGoogle Scholar
  15. Clotfelter ED, Rodriguez AC (2006) Behavioral changes in fish exposed to phytoestrogens. Environ Pollut 144(3):833–839CrossRefGoogle Scholar
  16. Cuisset B, Pelissero C, Le Menn F et al (1991) ELISA for Siberian sturgeon (Acipenser baeri Brandt) vitellogenin. In: Williot P (ed) Acipenser. CEMAGREF, Antony, France, pp 107–111Google Scholar
  17. Cuisset B, Pradelles P, Kime DE et al (1994) Enzyme immunoassay for 11-ketotestosterone using acetylcholinesterase as label: application to the measurement of 11-ketotestosterone in plasma of Siberian sturgeon. Comp Biochem Physiol C 108(2):229–241Google Scholar
  18. Cuisset B, Fostier A, Williot P et al (1995) Occurrence and in vitro biosynthesis of 11-ketotestosterone in Siberian sturgeon, Acipenser baeri Brandt maturing females. Fish Physiol Biochem 14(4):313–322CrossRefGoogle Scholar
  19. Fevold HR (1983) Regulation of the adrenal and gonadal microsomal mixed function oxygenases of steroid hormone biosynthesis. Annu Rev Physiol 45:19–36CrossRefGoogle Scholar
  20. Findlay JK, Buckmaster JM, Chamley WA et al (1973) Release of luteinising hormone by œstradiol 17β and a gonadotrophin-releasing hormone in ewes affected with clover disease. Neuroendocrinology 11:57–66CrossRefGoogle Scholar
  21. Fontana F, Congiu L, Mudrak VA et al (2008) Evidence of hexaploid karyotype in shortnose sturgeon. Genome 51(2):113–119CrossRefGoogle Scholar
  22. Fostier A, Jalabert B, Billard R et al (1983) The gonadal steroids. In: Fish physiology, vol IXA. Academic Press Inc., New York, pp 277–371Google Scholar
  23. Gontier-Latonnelle K, Cravedi JP, Laurentie M et al (2007) Disposition of genistein in rainbow trout (Oncorhynchus mykiss) and siberian sturgeon (Acipenser baeri). Gen Comp Endocrinol 150(2):298–308CrossRefGoogle Scholar
  24. Guiguen Y, Fostier A, Piferrer F et al (2010) Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish. Gen Comp Endocrinol 165(3):352–366CrossRefGoogle Scholar
  25. Hillerns PI, Zu Y, Fu YJ, Wink M (2005) Binding of phytoestrogens to rat uterine estrogen receptors and human sex hormone-binding globulins. Z Naturforsch C 60(7–8):649–656PubMedGoogle Scholar
  26. Hinfray N, Palluel O, Piccini B et al (2010) Endocrine disruption in wild populations of chub (Leuciscus cephalus) in contaminated French streams. Sci Total Environ 408(9):2146–2154CrossRefGoogle Scholar
  27. Inudo M, Ishibashi H, Matsumura N et al (2004) Effect of estrogenic activity, and phytoestrogen and organochlorine pesticide contents in an experimental fish diet on reproduction and hepatic vitellogenin production in medaka (Oryzias latipes). Comp Med 54(6):673–680PubMedGoogle Scholar
  28. Kiparissis Y, Balch GC, Metcalfe TL et al (2003) Effects of the isoflavones genistein and equol on the gonadal development of Japanese medaka Oryzias latipes. Environ Health Perspect 111(9):1158–1163CrossRefGoogle Scholar
  29. Latonnelle K, Fostier A, Le Menn F et al (2002a) Binding affinities of hepatic nuclear estrogen receptors for phytoestrogens in rainbow trout (Oncorhynchus mykiss) and Siberian sturgeon (Acipenser baeri). Gen Comp Endocrinol 129(2):69–79CrossRefGoogle Scholar
  30. Latonnelle K, Le Menn F, Kaushik SJ et al (2002b) Effects of dietary phytoestrogens in vivo and in vitro in rainbow trout and Siberian sturgeon: interests and limits of the in vitro studies of interspecies differences. Gen Comp Endocrinol 126:39–51CrossRefGoogle Scholar
  31. Le Bail PY, Breton B (1981) Rapid determination of the sex of puberal salmonid fish by a technique of immunoagglutination. Aquaculture 22:367–375CrossRefGoogle Scholar
  32. Le Menn F, Cerdà J, Babin PJ (2007) Ultrastructural aspects of the ontogeny and differentiation of ray-finned fish ovarian follicles. In: Babin PJ, Cerdà J, Lubzens E (eds) The fish oocyte, from basic studies to biotechnological applications. Springer, Dordrecht, pp 1–38Google Scholar
  33. Mai K, Zhang Y, Chen W et al (2012) Effects of dietary soy isoflavones on feed intake, growth performance and digestibility in juvenile Japanese flounder (Paralichthys olivaceus). J Ocean Univ China 11(4):511–516CrossRefGoogle Scholar
  34. Malison JA, Lima LC, Yuliana et al. (2005) Effects of genistein on growth, development and reproduction of rainbow trout Oncorhynchus mykiss and Atlantic Salmon. http://www.soyaqua.org/reports/effects-genistein-growth-development-and-reproduction-rainbow-trout-onchorynchus-mykiss-and
  35. Martin ME, Haourigui M, Pelissero C et al (1996) Interactions between phytoestrogens and human sex steroid binding protein. Life Sci 58:429–436CrossRefGoogle Scholar
  36. Mosconi G, Carnevali O, Franzoni MF et al (2002) Environmental estrogens and reproductive biology in amphibians. Gen Comp Endocrinol 126(2):125–129CrossRefGoogle Scholar
  37. Navas JM, Segner H (2006) Vitellogenin synthesis in primary cultures of fish liver cells as endpoint for in vitro screening of the (anti)estrogenic activity of chemical substances. Aquat Toxicol 80(1):1–22CrossRefGoogle Scholar
  38. Pelissero C (1988) Mise en place des bases méthodologiques pour l’étude de la reproduction chez l’esturgeon Acipenser baeri femelle. PhD Thesis n° 2229, Univ Bordeaux 1Google Scholar
  39. Pelissero C (1990) Intéraction de l’alimentation sur la présence de stéroïdes, d’isoflavones et de leurs dérivés dans le plasma de l’esturgeon sibérien, Acipenser baeri: conséquences sur la vitellogénèse. PhD Thesis n°427, Univ Bordeaux 1Google Scholar
  40. Pelissero C, Le Menn F (1987) Purification de la Vitellogénine de l’esturgeon sibérien Acipenser baeri. Congrès SIFA Tamaris (France), June 1987 CNRS Publication, pp 23Google Scholar
  41. Pelissero C, Le Menn F (1989) Evolution of sex steroid levels in males and first time maturing females of the Siberian sturgeon (Acipenser baeri) reared in a French fish farm. First Int Symp on Acipenser, Bordeaux, 1988, 87–96Google Scholar
  42. Pelissero C, Sumpter JP (1992) Steroid and “steroid-like substances” in fish diets. Aquaculture 107:283–301CrossRefGoogle Scholar
  43. Pelissero C, Le Menn F, Fontaine M (1988) Determination of sexual steroids and vitellogenin plasmatic levels in the Siberian sturgeon (Acipenser baeri) bred in fish farm. Ann C R Acad Sci 307(14):749–754Google Scholar
  44. Pelissero C, Bennetau B, Babin P et al (1991a) The estrogenic activity of certain phytoestrogens in the Siberian sturgeon Acipenser baeri. J Steroid Biochem Mol Biol 38(3):293–299CrossRefGoogle Scholar
  45. Pelissero C, Le Menn F, Kaushick S (1991b) Estrogenic effect of dietary soya bean meal on vitellogenesis in cultured Siberian sturgeon Acipenser baeri. Gen Comp Endocrinol 83(3):447–457CrossRefGoogle Scholar
  46. Pelissero C, Le Menn F, Narbonne JF (1991c) Plasma kinetic of ingested tritiated estradiol and influence on estradiol plasma levels in the cultured Siberian sturgeon Acipenser baeri. Fish Physiol Biochem 9:231–245CrossRefGoogle Scholar
  47. Pelissero C, Flouriot G, Foucher JL et al (1993) Vitellogenin synthesis in cultured hepatocytes; an in vitro test for the estrogenic potency of chemicals. J Steroid Biochem Mol Biol 44(3):263–272CrossRefGoogle Scholar
  48. Pelissero C, Lenczowski M, Chinzi D, Sumpter JP, Fostier A (1996) Effects of flavonoids on aromatase activity, an in vitro study. J Steroid Biochem Mol Biol 57(3/4):215–223CrossRefGoogle Scholar
  49. Pfeiffer E, Treiling CR, Hoehle SI et al (2005) Isoflavones modulate the glucuronidation of estradiol in human liver microsomes. Carcinogenesis 26(12):2172–2178CrossRefGoogle Scholar
  50. Pollack SJ, Ottinger MA, Sullivan CV et al (2003) The effects of the soy isoflavone genistein on the reproductive development of striped bass. N Am J Aquac 65:226–234CrossRefGoogle Scholar
  51. Rafini M, Fostier A, Le Menn F et al (2002) Effects of certain isoflavonoids on the ovarian aromatase activity in the Siberian sturgeon (Acipenser baeri). Rev Med Vet 153(7):521Google Scholar
  52. Sassi-Messai S, Gibert Y, Bernard L et al (2009) The phytoestrogen genistein affects zebrafish development through two different pathways. PLoS One 4(3):e4935. doi:10.1371/journal.pone.0004935CrossRefPubMedPubMedCentralGoogle Scholar
  53. Scornaienchi ML, Thornton C, Willett KL et al (2010) Cytochrome P450-mediated 17beta-estradiol metabolism in zebrafish (Danio rerio). J Endocrinol 206(3):317–325CrossRefGoogle Scholar
  54. Seppen J (2012) A diet containing the soy phytoestrogen genistein causes infertility in female rats partially deficient in UDP glucuronyltransferase. Toxicol Appl Pharmacol 264(3):335–342CrossRefGoogle Scholar
  55. Söffker M, Tyler CR (2010) Endocrine disrupting chemicals and sexual behaviors in fish—a critical review on effects and possible consequences. Crit Rev Toxicol 42(8):653–668CrossRefGoogle Scholar
  56. Sokolov LI, Koshelev BV, Khalatyan OV et al (1986) Ecomorphological characteristics of the Siberian sturgeon Acipenser baeri from the Aldan river. J Ichthyol 26:55–64Google Scholar
  57. Stevenson LM, Brown AC, Montgomery TM et al (2011) Reproductive consequences of exposure to waterborne phytoestrogens in male fighting fish Betta splendens. Arch Environ Contam Toxicol 60(3):501–510CrossRefGoogle Scholar
  58. Vasil’ev VP, Sokolov LI, Serebryakova EV (1981) Karyotype of the Siberian sturgeon Acipenser baeri Brandt of the Lena river and some questions on the Acipenserid Kariotypic evolution. J Icthyol 20:37–45Google Scholar
  59. Williot P, Brun R (1998) Ovarian development and cycles in cultured Siberian sturgeon, Acipenser baeri. Aquat Living Resour 11(02):111–118CrossRefGoogle Scholar
  60. Williot P, Rouault T (1982) Compte rendu d’une première reproduction en France de l’esturgeon sibérien Acipenser baeri. Bull Fr Piscic 286:255–261CrossRefGoogle Scholar
  61. Williot P, Rochard E, Castelnaud G et al (1997) Biological characteristics of European Atlantic sturgeon, Acipenser sturio, as the basis for a restoration program in France. In: Birstein VJ, Waldman JR, Bemis WE (eds) Sturgeon biodiversity and conservation, developments in environmental biology of fishes, vol 17. Kluwer Academic Publishers, Dordrecht, pp 359–370CrossRefGoogle Scholar
  62. Zhang L, Khan IA, Foran CM (2002) Characterization of the estrogenic response to genistein in Japanese medaka (Oryzias latipes). Comp Biochem Physiol C Toxicol Pharmacol 132(2):203–211CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Catherine Bennetau-Pelissero
    • 1
    • 2
  • Françoise Le Menn
    • 3
  1. 1.University of BordeauxTalence CedexFrance
  2. 2.Bordeaux Sciences AgroGradignanFrance
  3. 3.PessacFrance

Personalised recommendations