Oxygen Demand in Sturgeon Farming

  • Guy Nonnotte
  • Patrick Williot
  • Karine Pichavant-Rafini
  • Michel Rafini
  • Valerie Maxime
  • Liliane Nonnotte


O2 is paramount in aquaculture to ensure growth and welfare in fish. But the diffusion of O2 in water layers is very difficult, and suffocation may threaten the fishes continuously in intensive farming.

This study presents essential basic knowledge to appreciate the oxygen availability in water and oxygen demand in farmed sturgeons. In fish, because of the low O2 solubility of the water, a large volume of water must come in contact with the gas-exchanging surface at the gill level. Moreover, water is also over 800 times denser than air and 50 times more viscous, so fish must use more energy (5–30% of total energy) than terrestrial animals to simply move water across their respiratory surfaces. To maximize the diffusion of oxygen, fish use a process known as countercurrent flow, in which water and blood flow in opposite directions across the gills. Activity metabolism in Siberian sturgeon and critical oxygen concentration in water were also assessed as functions of temperature and body mass. Finally, to prevent a decrease of the oxygen availability in water and hypoxic stress consequences on fish growth, it is important to record the oxygen concentration in outflowing water and to observe the activity level of the fish.


Siberian sturgeon Acipenser baerii Respiration Gill morphology Activity metabolism Critical oxygen level Oxygen demand 


\( {\alpha}_{{\mathrm{CO}}_2} \)

Carbon dioxide solubility

\( {\alpha}_{{\mathrm{O}}_2} \)

Oxygen solubility


\( {C}_{{\mathrm{wO}}_2} \) at air saturation

\( {C}_{{\mathrm{wO}}_2} \)

Concentration of oxygen in water


Fresh water


Heart rate


Lactate concentration


Body mass in g, kg called


Oxygen consumption

\( {\mathrm{Pa}}_{{\mathrm{CO}}_2} \)

Arterial carbon dioxide partial pressure

\( {\mathrm{Pa}}_{{\mathrm{O}}_2} \)

Arterial oxygen partial pressure


Barometric pressure in kPa, mmHg, Torr

\( {P}_{{\mathrm{CO}}_2} \)

Carbon dioxide partial pressure


Blood pressure in dorsal artery


Difference between systolic and diastolic pressure


Arterial blood pH

\( {P}_{{\mathrm{O}}_2} \)

Oxygen partial pressure

\( {P}_{{\mathrm{wCO}}_2} \)

Carbon dioxide partial pressure in water

\( {P}_{{\mathrm{wO}}_2} \)

Oxygen partial pressure in water


The ratio of MO2 at temperature (t + 10) °C over MO2 at temperature t °C


Sea water


Temperature in °C



We wish to gratefully acknowledge the efficient help of Dr. Nonnotte Philippe, research engineer, Geochemistry/TI-MS at the Geosciences Dept. of the Brest University (France), IUEM, UMR 6538, and to Christophe Nonnotte (S/A Flight Tests Aircraft Manager BSEMD) Airbus Industry Toulouse (France) in drawing the figures.


  1. Belaud A (1996) Oxygénation de l’eau en aquaculture intensive. CEPADUES (eds), Toulouse, p 207Google Scholar
  2. Bret JR (1964) The respiratory metabolism and swimming performance of young sockeye salmon. J Fish Res Board Can 21:1182–1226Google Scholar
  3. Burggren WW, Randall DJ (1978) Oxygen uptake and transport during hypoxic exposure in the sturgeon Acipenser transmontanus. Respir Physiol 34:171–184CrossRefGoogle Scholar
  4. Cech JJ (1990) Respirometry. In: Schreck CB, Moyle PB (eds) Methods for fish biology. American Fisheries Society, Bethesda, MD, pp 335–362Google Scholar
  5. Cech JJ, Mittchell SJ, Wragg TE (1984) Comparative growth of juvenile white sturgeon and striped bass: effects of temperature and hypoxia. Estuaries 7:12–28CrossRefGoogle Scholar
  6. Crocker CE, Cech JJ (1997) Effects of environmental hypoxia on oxygen consumption rate and swimming activity in juvenile white sturgeon, Acipenser transmontanus, in relation to temperature and life intervals. Environ Biol Fish 50:383–389CrossRefGoogle Scholar
  7. Dejours P (1981) Principles of compartive respiratory physiology, 2nd edn. North Holland/American Elsevier, Amsterdam, p 265Google Scholar
  8. Duthie GG (1982) The respiratory metabolism of temperature-adapted flatfish at rest and during swimming activity and the use of anaerobic metabolism at moderate swimming speeds. J Exp Biol 97:359–373PubMedGoogle Scholar
  9. Ege R, Krogh A (1915) On the relation between the temperature and the respiratory exchange in fishes. Int Rev Gesamten Hydrobiol Hydrog 7:48–55CrossRefGoogle Scholar
  10. Fry FEJ (1971) The effects of environmental factors on the physiology of fish. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 6. Academic Press, New York, pp 1–98Google Scholar
  11. Hughes GM (1984) General anatomy of gills. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 10. Academic Press, New York, pp 1–72Google Scholar
  12. Kirsch R, Nonnotte G (1977) Cutaneous respiration in three freshwater teleosts. Respir Physiol 29:339–354CrossRefGoogle Scholar
  13. Klyashtorin LB (1976) The sensitivity of young sturgeons to oxygen deficiency. J Ichthyol 16:677–682Google Scholar
  14. Klyashtorin LB (1981) The ability of sturgeons (Acipenseridae) to regulate gas exchange. J Ichthyol 21:141–144Google Scholar
  15. Laurent P (1984) Gill internal morphology. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 10. Academic Press, New York, pp 73–183Google Scholar
  16. Laurent P, Dunel S (1980) Morphology of gill epithelia in fish. Am J Phys 238:R147–R159Google Scholar
  17. Le Moigne J, Soulier P, Peyraud-Waitzenneger M, Peyraud C (1986) Cutaneous and gill oxygen uptake in the european eel (Anguilla anguilla L.) in relation to ambient PO2, 10–400 torr. Respir Physiol 66:341–354CrossRefGoogle Scholar
  18. Maxime M, Pennec JP, Peyraud C (1991) Efects of direct transfer from fresh water to sea water on respiratory and circulatory variables and acid-base status in rainbow trout. J Comp Physiol 161:557–568CrossRefGoogle Scholar
  19. Maxime V, Nonnotte G (1997) Bases physiologiques de la respiration chez les poisons. La Pisciculture française 129:29pGoogle Scholar
  20. Maxime V, Nonnotte G, Peyraud C, Williot P, Truchot JP (1995) Circulatory and respiratory effects of an hypoxic stress in the Siberian sturgeon. Respir Physiol 100:203–212CrossRefGoogle Scholar
  21. Maxime V, Peyraud-Waitzenneger M, Claireaux G, Peyraud C (1990) Effects of rapid transfer from sea water to fresh water on respiratory variables, blood acid-base status and oxygen affinity of haemoglobin in atlantic salmon (Salmo salar L.) J Comp Physiol 160:31–39CrossRefGoogle Scholar
  22. Mayfield RB, Cech JJ (2004) temperature effects on green sturgeon bioenergetics. Trans Am Fish Soc 133:961–970CrossRefGoogle Scholar
  23. MCKenzie DJ, Piraccini G, Papini N, Galli C, Bronzi P, Bolis G, Taylor EW (1997) Oxygen consumption and ventilator reflex responses are influenced by dietary lipids in sturgeon. Fish Physiol Biochem 16:365–379CrossRefGoogle Scholar
  24. Nonnotte G, Kirsch R (1978) Cutaneous respiration in seven seawater teleosts. Respir Physiol 35:111–118CrossRefGoogle Scholar
  25. Nonnotte G, Maxime V, Truchot JP, Williot P, Peyraud C (1993) Respiratory responses to progressive ambient hypoxia in the sturgeon, Acipenser baerii. Respir Physiol 91:71–82CrossRefGoogle Scholar
  26. Olifan VI (1940) Daily rhythm of the respiration of young fish. DAN SSSR 24:8–9Google Scholar
  27. Prosser CL (1973) Comparative animal physiology. In: W B Saunders (ed) Environmental physiology, vol 1. Philadelphia, p 456Google Scholar
  28. Ruer FM, Cech JJ, Doroshov SI (1987) Routine metabolism of the white sturgeon, Acipenser transmontanus: effect of population density and hypoxia. Aquaculture 62:45–52CrossRefGoogle Scholar
  29. Salin D (1992) La toxicité de l’ammoniaque chez l’esturgeon sibérien, Acipenser baeriii: effets morphologiques, physiologiques et métaboliques d’une exposition à des doses sublétales et létales. Thèse n° 749, Université de Bordeaux 1, 134pGoogle Scholar
  30. Secor DH, Gunderson TE (1998) Effects on hyoxia and temperature on survival, growth and respiration of juvenile Atlantic sturgeon, Acipenser oxyrinchus. Fish Bull 96:603–613Google Scholar
  31. Steffensen JF, Lomholt JP, Johansen K (1982) Gill ventilation and oxygen extraction during graded hypoxia in two ecologically distinct species of flatfish, the flounder (Platichthys flesus) and the plaice (Pleuronectes platessa). Environ Biol Fish 7:157–163CrossRefGoogle Scholar
  32. Ultsch GR, Jackson DC, Moalli R (1981) Metabolic oxygen conformity among lower vertebrates: the toadfish revisited. J Comp Physiol B 142:439–443CrossRefGoogle Scholar
  33. Vinberg GG (1956) Rate of metabolism and food requirements of fishes. Fish Res Board Can 194:202Google Scholar
  34. Williot P, Rouault T, Brun R, Miossec G, Rooryck O (1988) Grossissement intensif de l’esturgeon sibérien (Acipenser baerii) en bassin. Aqua Revue 18:27–32. Available on demand (the journal does not exist anymore)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Guy Nonnotte
    • 1
  • Patrick Williot
    • 2
  • Karine Pichavant-Rafini
    • 3
  • Michel Rafini
    • 4
  • Valerie Maxime
    • 5
  • Liliane Nonnotte
    • 1
  1. 1.La Teste de BuchFrance
  2. 2.AudengeFrance
  3. 3.Laboratoire ORPHY EA4324Université de Bretagne OccidentaleBrest Cedex 3France
  4. 4.Département Communication, Anglais, Sciences HumainesUniversité de Bretagne OccidentaleBrest Cedex 3France
  5. 5.Département Sciences de la Matière et de la VieUniversité de Bretagne SudLorient-cedexFrance

Personalised recommendations