Advertisement

Genetic Variability in Wild Populations and Farmed Broodstocks of the Siberian Sturgeon in Russia

  • Nikolai Mugue
  • Anna Barmintseva
Chapter

Abstract

In this chapter, we cover different genetic aspects of A. baerii. Phylogenetic position of Siberian sturgeon among other Acipenseriformes, genomic organization, and events of polyploidization are discussed. Genetic variation in four natural populations of the Siberian sturgeon (rivers Ob, Yenisei and Lena and Lake Baikal) is assessed for mitochondrial (control region or D-loop) and nuclear (microsatellite loci) markers. Most of A. baerii stocks reared at sturgeon farms in Russia have decreased genetic variation compared with wild populations. Two genetically distinct groups of stocks, both originated at Konakovo hatchery, are now widely distributed across sturgeon farms in Russia. Origin of “baerii-like” haplotype in the Caspian population of the Russian sturgeon is discussed in context of A. baerii paleogeography as well method for identification of each species by mtDNA analysis.

Keywords

A. baerii Mitochondrial DNA Microsatellite analysis Genetic management DNA-barcode 

References

  1. Barmintseva AE, Mugue NS (2013) The use of microsatellite loci for identification of sturgeon species (Acipenseridae) and hybrid forms. Genetika 49(9):950–961Google Scholar
  2. Birstein VJ, DeSalle R (1998) Molecular phylogeny of Acipenserinae. Mol Phylogenet Evol 9(1):141–155CrossRefGoogle Scholar
  3. Birstein VJ, Poletaev AI, Goncharov BF (1993) DNA content in Eurasian sturgeon species determined by flow cytometry. Cytometry 14(4):377–383CrossRefGoogle Scholar
  4. Birstein VJ, Hanner R, DeSalle R (1997) Phylogeny of the Acipenseriformes: cytogenetic and molecular approaches. In: Sturgeon biodiversity and conservation. Kluwer Academic Publishers, Dordrecht, pp 127–155CrossRefGoogle Scholar
  5. Birstein VJ, Doukakis P, Sorkin B, Desalle R (1998) Population aggregation analysis of three caviar-producing species of sturgeons and implications for the species identification of black caviar. Conserv Biol 12(4):766–775CrossRefGoogle Scholar
  6. Birstein VJ, Doukakis P, DeSalle R (1999) Molecular phylogeny of Acipenserinae and black caviar species identification. J Appl Ichthyol 15:12–16CrossRefGoogle Scholar
  7. Birstein VJ, Doukakis P, DeSalle R (2000) Polyphyly of mtDNA lineages in the Russian sturgeon, Acipenser gueldenstaedtii: forensic and evolutionary implications. Conserv Genet 1(1):81–88CrossRefGoogle Scholar
  8. Birstein VJ, Doukakis P, DeSalle R (2002) Molecular phylogeny of Acipenseridae: nonmonophyly of Scaphirhynchinae. Copeia 2002(2):287–301CrossRefGoogle Scholar
  9. Birstein VJ, Ruban G, Ludwig A, Doukakis P, DeSalle R (2005) The enigmatic Caspian Sea Russian sturgeon: how many cryptic forms does it contain? Syst Biodivers 3(2):203–218CrossRefGoogle Scholar
  10. Birstein VJ, Desalle R, Doukakis P, Hanner R, Ruban GI, Wong E (2009) Testing taxonomic boundaries and the limit of DNA barcoding in the Siberian sturgeon, Acipenser baerii. Mitochondrial DNA 20(5–6):110–118CrossRefGoogle Scholar
  11. Boscari E, Barmintseva A, Pujolar JM, Doukakis P, Mugue N, Congiu L (2014) Species and hybrid identification of sturgeon caviar: a new molecular approach to detect illegal trade. Mol Ecol Resour 14(3):489–498CrossRefGoogle Scholar
  12. Brandt JF (1869) Einige Worte uber die europaisch-asiatischen Storarten (Sturionides), von Johann Friedrich Brandt (Lu le 20 mai 1869). Bulletin de L’Academie Imperiale des Sciences De St.-Petersbourg 14:171–175Google Scholar
  13. Bronzi P, Rosenthal H, Gessner J (2011) Global sturgeon aquaculture production: an overview. J Appl Ichthyol 27:169–175CrossRefGoogle Scholar
  14. Brown GG, Gadaleta G, Pepe G, Saccone C, Sbisa E (1986) Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. J Mol Biol 192(3):503–511CrossRefGoogle Scholar
  15. Brown JR, Beckenbach K, Beckenbach AT, Smith MJ (1996) Length variation, heteroplasmy and sequence divergence in the mitochondrial DNA of four species of sturgeon (Acipenser). Genetics 142(2):525–535PubMedPubMedCentralGoogle Scholar
  16. Buroker NE, Brown JR, Gilbert TA, O'Hara PJ, Beckenbach AT, Thomas WK, Smith MJ (1990) Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model. Genetics 124(1):157–163PubMedPubMedCentralGoogle Scholar
  17. Chen XW, Jiang S, Shi ZY, Li Q, Xun XR, Guo da Q (2012) Mitochondrial genome of the Siberian sturgeon Acipenser baerii. Mitochondrial DNA 23(2):120–122CrossRefGoogle Scholar
  18. Clavelli F (2005) National aquaculture sector overview. Uruguay National Aquaculture Sector Overview Fact Sheets FAO Fisheries and Aquaculture Department [online] Rome. Updated 1 February 2005. http://www.fao.org/fishery/countrysector/naso_uruguay/en
  19. Debus L, Winkler M, Billard R (2002) Structure of micropyle surface on oocytes and caviar grains in sturgeons. Int Rev Hydrobiol 87(5–6):585–603CrossRefGoogle Scholar
  20. DeSalle R, Birstein VJ (1996) PCR identification of black caviar. Nature 381:197–198CrossRefGoogle Scholar
  21. Fain SR, LeMay JP, Shafer J, Hoesch RM, Hamlin BH (2000) The development of a DNA procedure for the forensic identification of caviar. National Fish and Wildlife Forensics Laboratory.Final report, p.1–20Google Scholar
  22. Fontana F, Zane L, Pepe A, Congiu L (2007) Polyploidy in Acipenseriformes: cytogenetic and molecular approaches. In: Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG (eds) Fish cytogenetics. Science Publisher, Enfield, Inc, Hampshire, USA, pp 385–403Google Scholar
  23. Havelka M, Hulák M, Bailie DA, Prodöhl PA, Flajšhans M (2013) Extensive genome duplications in sturgeons: new evidence from microsatellite data. J Appl Ichthyol 29(4):704–708CrossRefGoogle Scholar
  24. Havelka M, Hulak M, Rab P, Rabova M, Lieckfeldt D, Ludwig A, Rodina M, Gela D, Psenicka M, Bytyutskyy D, Flajshans M (2014) Fertility of a spontaneous hexaploid male Siberian sturgeon, Acipenser baerii. BMC Genet 15:5CrossRefGoogle Scholar
  25. Havelka M, Bytyutskyy D, Symonová R, Ráb P, Flajšhans M (2016) The second highest chromosome count among vertebrates is observed in cultured sturgeon and is associated with genome plasticity. Genet Sel Evol 48:12CrossRefGoogle Scholar
  26. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc B Biol Sci 270(1512):313–321CrossRefGoogle Scholar
  27. Henderson-Arzapalo A, King TL (2002) Novel microsatellite markers for Atlantic sturgeon (Acipenser oxyrinchus) population delineation and broodstock management. Mol Ecol Notes 2:437–439CrossRefGoogle Scholar
  28. Henriksen M, Mangerud J, Matiouchkov A, Murray AS, Paus A, Svendsen JI (2008) Intriguing climatic shifts in a 90 kyr old lake record from northern Russia. Boreas 37:20–37CrossRefGoogle Scholar
  29. Herran R, Fontana F, Lanfredi M, Congiu L, Leis M, Rossi R, Rejon CR, Rejon MR, Garrido-Ramos MA (2001) Slow rates of evolution and sequence homogenization in an ancient satellite DNA family of sturgeons. Mol Biol Evol 18(1):432–436CrossRefGoogle Scholar
  30. Hilton EJ (2005) Observations on the skulls of sturgeons (Acipenseridae): shared similarities of Pseudoscaphirhynchus kaufmanni and juvenile specimens of Acipenser stellatus. Environ Biol Fish 72(2):135–144CrossRefGoogle Scholar
  31. Jenneckens I, Meyer J-N, Debus L, Pitra C, Ludwig A (2000) Evidence of mitochondrial DNA clones of Siberian sturgeon, Acipenser baerii, within Russian sturgeon, Acipenser gueldenstaedtii, caught in the River Volga. Ecol Lett 3(6):503–508CrossRefGoogle Scholar
  32. Kim DS, Nam YK, Noh JK, Park CH, Chapman FA (2005) Karyotype of North American shortnose sturgeon Acipenser brevirostrum with the highest chromosome number in the Acipenseriformes. Ichthyol Res 52:94–97CrossRefGoogle Scholar
  33. Krieger J, Fuerst PA (2002) Evidence for a slowed rate of molecular evolution in the order acipenseriformes. Mol Biol Evol 19(6):891–897CrossRefGoogle Scholar
  34. Krieger J, Hett AK, Fuerst PA, Artyukhin EA, Ludwig A (2008) The molecular phylogeny of the order Acipenseriformes revised. J Appl Ichthyol 24(s1):36–45CrossRefGoogle Scholar
  35. Lee WJ, Conroy J, Howell WH, Kocher TD (1995) Structure and evolution of teleost mitochondrial control regions. J Mol Evol 41(1):54–66CrossRefGoogle Scholar
  36. Ludwig A (2008) Identification of Acipenseriformes species in trade. J Appl Ichthyol 24(s1):2–19CrossRefGoogle Scholar
  37. Ludwig A, May B, Debus L, Jenneckens I (2000) Heteroplasmy in the mtDNA control region of sturgeon (Acipenser, Huso and Scaphirhynchus). Genetics 156(4):1933–1947PubMedPubMedCentralGoogle Scholar
  38. Ludwig A, Belfiore NM, Pitra C, Svirsky V, Jenneckens I (2001) Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus). Genetics 158(3):1203–1215PubMedPubMedCentralGoogle Scholar
  39. Ludwig A, Debus L, Jenneckens I (2002) A molecular approach to control the international trade in black caviar. Int Rev Hydrobiol 87(5–6):661–674CrossRefGoogle Scholar
  40. Ludwig A, Lippold S, Debus L, Reinartz R (2009) First evidence of hybridization between endangered sterlets (Acipenser ruthenus) and exotic Siberian sturgeons (Acipenser baerii) in the Danube River. Biol Invasions 11:753–760CrossRefGoogle Scholar
  41. Malyutin VS, Ruban GI (2009) On the history of fish husbandry of Siberian sturgeon Acipenser baerii from the Lena River for acclimatization and commercial cultivation. J Ichthyol 49(5):376–382CrossRefGoogle Scholar
  42. Mangerud J, Astakhov V, Jakobsson M, Svendsen JI (2001) Huge Ice-age lakes in Russia. J Quat Sci 16(8):773–777CrossRefGoogle Scholar
  43. Mangerud J, Jakobsson M, Alexandersonk H, Astakhov V, Clarkee GKC, Henriksena M, Hjortc C, Krinnerf G, Lunkka J-P, Moller P, Murray A, Nikolskaya O, Saarnisto M, Svendsen JI (2004) Ice-dammed lakes and rerouting of the drainage of northern Eurasia during the Last Glaciation. Quat Sci Rev 23:1313–1332CrossRefGoogle Scholar
  44. Miracle AL, Campton DE (1995) Tandem repeat sequence variation and length heteroplasmy in the mitochondrial DNA D-loop of the threatened Gulf of Mexico sturgeon, Acipenser oxyrinchus desotoi. J Hered 86(1):22–27CrossRefGoogle Scholar
  45. Mugue NS, Barmintseva AE, Rastorguev SM, Mugue VN, Barmintsev VA (2008) Polymorphism of the mitochondrial DNA control region in eight sturgeon species and development of a system for DNA-based species identification. Russ J Genet 44(7):793–798CrossRefGoogle Scholar
  46. Nikolsky AM (1896) Siberian sturgeon Acipenser Stenorhynchus sp. Nov. Annuals of Zoological Museum of Russian Academy of Sciences, St Petersburg 1:400–405Google Scholar
  47. Nikolyukin NI (1972) Remote hybridization of sturgeons and teleosts. Pishchevaya Promyshlennost, Moscow, 335pGoogle Scholar
  48. Peng Z, Ludwig A, Wang DQ, Diogo R, Wei Q, He S (2007) Age and biogeography of major clades in sturgeons and paddlefishes (Pisces: Acipenseriformes). Mol Phylogenet Evol 42(3):854–862CrossRefGoogle Scholar
  49. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959PubMedPubMedCentralGoogle Scholar
  50. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9(3):552–569PubMedGoogle Scholar
  51. Ruban G (2005) The Siberian sturgeon Acipenser baerii Brandt: species structure and ecology. World Sturgeon Conservation Society—Special Publication No 1. Norderstedt (Germany)Google Scholar
  52. Ruban G, Khodorevskaya RP (2011) Caspian Sea sturgeon fishery: a historic overview. J Appl Ichthyol 27:199–208CrossRefGoogle Scholar
  53. Sokolov LI, Vasil’ev VP (1989) Acipenser baerii Brandt, 1869. In: Holcik J (ed) The freshwater fishes of Europe, Part II, vol 1. AULA-Verlag, Wiesbaden, pp 263–284Google Scholar
  54. Timoshkina NN, Barmintseva AE, Usatov AV, Mugue NS (2009) Intraspecific genetic polymorphism of Russian sturgeon Acipenser gueldenstaedtii. Russ J Genet 45(9):1098–1106CrossRefGoogle Scholar
  55. Vasil’ev V (2009) Mechanisms of polyploid evolution in fish: polyploidy in sturgeons. In: Carmona R, Domezain A, García-Gallego M, Hernando J, Rodríguez F, Ruiz-Rejón M (eds) Biology, conservation and sustainable development of sturgeons, Fish and fisheries series, vol 29. Springer, Netherlands, pp 97–117CrossRefGoogle Scholar
  56. Vasil’ev VP, Vasil'eva ED, Shedko SV, Novomodny GV (2009) Ploidy levels in the kaluga, Huso dauricus and Sakhalin sturgeon Acipenser mikadoi (Acipenseridae, Pisces). Dokl Biol Sci 426(1):228–231CrossRefGoogle Scholar
  57. Vecsei P, Charette R, Hochleithner M (2001) Guide to the identification of sturgeon and paddlefish species controlled under the Convention on International Trade in Endangered Species of Wild Fauna and Flora, CITESGoogle Scholar
  58. Vishnyakova KS, Mugue NS, Zelenina DA, Mikodina EV, Kovaleva OA, Madan GV, Yegorov YE (2008) Cell culture and karyotype of Sakhalin sturgeon Acipenser mikadoi. Biochem (Mosc) Suppl Ser A Membr Cell Biol 3(1):42–54CrossRefGoogle Scholar
  59. Wei QW, Zou Y, Li P, Li L (2011) Sturgeon aquaculture in China: progress, strategies and prospects assessed on the basis of nation-wide surveys (2007–2009). J Appl Ichthyol 27:162–168CrossRefGoogle Scholar
  60. Weiperth A, Csányi B, György ÁI, Szekeres J, Friedrich T, Szalóky Z (2014) Observation of the sturgeon hybrid (Acipenser naccarii x Acipenser baerii) in the Hungarian section of River Danube. Pisces Hungarici 8:111–112Google Scholar
  61. Welsh AB, Blumberg M, May B (2003) Identification of microsatellite loci in lake sturgeon, Acipenser fulvescens, and their variability in green sturgeon, A. medirostris. Mol Ecol Notes 3:47–55CrossRefGoogle Scholar
  62. Williot P, Rouault T (1982) Compte rendu d’une première reproduction en France de l'esturgeon sibérien Acipenser baerii. Bull Fr Piscic 286:255–261CrossRefGoogle Scholar
  63. Williot P, Sabeau L, Gessner J, Arlati G, Bronzi P, Gulyas T, Berni P (2001) Sturgeon farming in Western Europe: recent developments and perspectives. Aquat Living Resour 14(6):367–374CrossRefGoogle Scholar
  64. Zakharov AB, Tumanov MD, Shalaev SN (2007) Siberian sturgeon Acipenser baerii in the river Pechora. J Ichthyol 47(3):222–227CrossRefGoogle Scholar
  65. Zane L, Patarnello T, Ludwig A, Fontana F, Congiu L (2002) Isolation and characterization of microsatellites in the Adriatic sturgeon (Acipenser naccarii). Mol Ecol Notes 2(4):586–588CrossRefGoogle Scholar
  66. Zhang X, Wu W, Li L, Ma X, Chen J (2013) Genetic variation and relationships of seven sturgeon species and ten interspecific hybrids. Genet Sel Evol 45:21CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Russian Institute of Fisheries and Oceanography (VNIRO), Russian Federation CITES Scientific Authority for AcipenseriformesMoscowRussian Federation

Personalised recommendations