Advertisement

Dendroecology pp 211-229 | Cite as

Fire History and Fire Regimes Shifts in Patagonian Temperate Forests

Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 231)

Abstract

Fire has been a frequent disturbance in Patagonia. The presence of charcoal in sedimentary records covering the last 44,000 years suggests that natural fires played a significant role in shaping the landscape before the arrival of Native Americans ca. 14,500–12,500 years ago. Dendrochronological studies focused on the reconstruction of fire histories have been conducted in the Patagonian forests on both sides of the Andes Cordillera, beginning in the late 1990s. Here, we review the present knowledge of the history of fires in temperate forests in Patagonia, their main drivers, and discuss the evidence and impacts of burns and reburns on post-fire response, as well as possible mechanisms to shift into alternative stable states. Dendrochronology was extremely useful to develop multi-century fire histories in Araucaria araucana, Pilgerodendron uviferum, Fitzroya cupressoides and Austrocedrus chilensis and mixed Austrocedrus-Nothofagus dombeyi forests in Patagonia. In the case of Araucaria, Austrocedrus and Pilgerodendron forests, dendrochronological reconstructions show diverse and heterogeneous patterns of fire frequency related to changes in human activities and settlement processes over the last centuries. Fire history reconstructions document infrequent events in the Fitzroya wet rainforests, with ca. 800-year old in the Costal Range in South-Central Chile and ca. 1000-year old chronologies in the Argentinean Andes. Climate variability has a significant influence on fire occurrence in these Patagonian forests. Fire events have been strongly associated with low moisture availability linked to El Niño – Southern Oscillation (ENSO) and the Southern Annular Mode (SAM), the major climate drivers promoting fire. Future directions and challenges for fire history studies in Patagonian forests are proposed at the end of this chapter.

Keywords

Fire history Dendropyrochronology Patagonia Araucaria araucana Austrocedrus chilensis Fitzroya cupressoides Nothofagus dombeyi Pilgerodendron uviferum 

Notes

Acknowledgments

We thank the Administración de Parques Nacionales (National Parks Administration of Argentina) and private owners for sampling permissions during the last decades. IAM was supported by the Agencia Nacional de Promoción Científica y Tecnológica de Argentina (grant PICT 2012-1891). AH thanks National Science Foundation (Grant No. 0956552) and National Geographic Society (Grant No.7988-06). MEG thanks the Center for Climate and Resilience Research (CR)2 (CONICYT/FONDAP/15110009) and FONDECYT (Grant No. 1171400). IAM and JP are researchers at CONICET (National Council for Scientific and Technical Research of Argentina).

References

  1. Aguilera-Betti I, Muñoz A, Stahle D, et al (2017) The first millennium-age Araucaria araucana in Patagonia. Tree Ring Res 73: 53–56. doi: 10.3959/1536-1098-73.1.53
  2. Alfonso JL (1941) El Pehuén, Araucaria o Pino del Neuquén en la Argentina. Ing Agron 3:1–14Google Scholar
  3. Aravena JC (2007) Reconstructing climate variability using tree rings and glacier fluctuations in the southern Chilean Andes. PhD Thesis, University of Western OntarioGoogle Scholar
  4. Bannister JR, Donoso PJ, Bauhus J (2012) Persistence of the slow growing conifer Pilgerodendron uviferum in old-growth and fire-disturbed southern bog forests. Ecosystems 15:1158–1172. doi: 10.1007/s10021-012-9574-7 CrossRefGoogle Scholar
  5. Bannister JR, Wagner S, Donoso PJ, Bauhus J (2014) The importance of seed trees in the dioecious conifer Pilgerodendron uviferum for passive restoration of fire disturbed southern bog forests. Austral Ecol 39:204–213. doi: 10.1111/aec.12060 CrossRefGoogle Scholar
  6. Burns BR (1993) Fire-induced dynamics of Araucaria araucana-Nothofagus antarctica forest in the Southern Andes. J Biogeogr 20:669–685CrossRefGoogle Scholar
  7. Calder WJ, Parker D, Stopka CJ et al (2015) Medieval warming initiated exceptionally large wildfire outbreaks in the Rocky Mountains. Proc Natl Acad Sci 112:13261–13266. doi: 10.1073/pnas.1500796112 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cóbar-Carranza AJ, García RA, Pauchard A, Peña E (2015) Efecto de la alta temperatura en la germinación y supervivencia de semillas de la especie invasora Pinus contorta y dos especies nativas del sur de Chile. Bosque Valdivia 36:53–60CrossRefGoogle Scholar
  9. Cóbar-Carranza AJ, García RA, Pauchard A, Peña E (2014) Effect of Pinus contorta invasion on forest fuel properties and its potential implications on the fire regime of Araucaria araucana and Nothofagus antarctica forests. Biol Invasions 16:2273–2291. doi: 10.1007/s10530-014-0663-8 CrossRefGoogle Scholar
  10. Daniels LD, Veblen TT (2000) ENSO effects on temperature and precipitation of the Patagonian-Andean region: implications for biogeography. Phys Geogr 21:223–243Google Scholar
  11. Díaz MF, Bigelow S, Armesto JJ (2007) Alteration of the hydrologic cycle due to forest clearing and its consequences for rainforest succession. For Ecol Manag 244:32–40. doi: 10.1016/j.foreco.2007.03.030 CrossRefGoogle Scholar
  12. Dillehay TD, Ocampo C, Saavedra J et al (2015) New Archaeological Evidence for an Early Human Presence at Monte Verde, Chile. PLoS One 10:e0141923. doi: 10.1371/journal.pone.0141923 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dimitri MJ (1972) La región de los Bosques Andino-Patagónicos. Sinopsis general. INTA, Buenos AiresGoogle Scholar
  14. Donoso C (1981) Tipos forestales de los bosques nativos de Chile. CONAF-PNUD-FAO, Santiago de ChileGoogle Scholar
  15. Donoso Zegers C, Escobar B, Pastorino M et al (2006a) Austrocedrus chilensis Pic.Ser. et Bizarri; Ciprés de la Cordillera, Len. In: Donoso ZC (ed) Las especies arbóreas de los bosques templados de Chile y Argentina: Autoecología. Marisa Cúneo Ediciones, Valdivia, pp 54–67Google Scholar
  16. Donoso Zegers C, Lara A, Escobar B et al (2006b) Fitzroya cupressoides (Molina) I.M. Johnst.; Alerce, Lahuén, Lahuán. In: Donoso ZC (ed) Las especies arbóreas de los bosques templados de Chile y Argentina: Autoecología. Marisa Cúneo Ediciones, Valdivia, pp 68–81Google Scholar
  17. Enright NJ, Fontaine JB, Bowman DMJS et al (2015) Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front Ecol Environ 13:265–272. doi: 10.1890/140231 CrossRefGoogle Scholar
  18. Fletcher M-S, Wood SW, Haberle SG (2014) A fire-driven shift from forest to non-forest: evidence for alternative stable states? Ecology 95:2504–2513. doi: 10.1890/12-1766.1 CrossRefGoogle Scholar
  19. Fraver S, González ME, Silla F et al (1999) Composition and structure of remnant Fitzroya cupressoides (Alerce) forests of southern Chile’s Central Depression. J Torrey Bot Soc 126:49–57CrossRefGoogle Scholar
  20. Garreaud R, Lopez P, Minvielle M, Rojas M (2013) Large-scale control on the Patagonian climate. J Clim 26:215–230. doi: 10.1175/JCLI-D-12-00001.1 CrossRefGoogle Scholar
  21. Garreaud RD, Nicora MG, Bürgesser RE, Ávila EE (2014) Lightning in Western Patagonia. J Geophys Res Atmos 119:4471–4485. doi: 10.1002/2013JD021160 CrossRefGoogle Scholar
  22. González ME (2005) Fire history data as reference information in ecological restoration. Dendrochronologia 22:149–154. doi: 10.1016/j.dendro.2005.04.001 CrossRefGoogle Scholar
  23. González ME, Lara A (2015) Large fires in the Andean Araucaria forests: when a natural ecological process becomes a threat. Orix Int J Conserv 49:394. doi: 10.1017/S0030605315000575 Google Scholar
  24. González ME, Lara A (2016) Restauración post-fuego de los bosques de Araucaria: nuevos escenarios, antiguas amenazas. In: 1er Congreso Nacional de Áreas Silvestres Protegidas del Estado, Temuco, ChileGoogle Scholar
  25. González ME, Muñoz A, Assal T, Sibold JS (2016) Fire regimes and fire effects in Chilean Araucaria forests. Symposium Wildfire regime shifts in Southern temperate forest ecosystems: climate change, anthropogenic influences, and ecological feedbacks. In: Abstract of VIII Southern Connection Congress. Punta Arenas, p 53Google Scholar
  26. González ME, Veblen TT (2006) Climatic influences on fire in Araucaria araucana-Nothofagus forests in the Andean cordillera of south-central Chile. Écoscience 13:342–350CrossRefGoogle Scholar
  27. González ME, Veblen TT (2007) Incendios en bosques de Araucaria araucana y consideraciones ecológicas al madereo de aprovechamiento en áreas recientemente quemadas. Rev Chil Hist Nat 80:243–253CrossRefGoogle Scholar
  28. González ME, Veblen TT, Sibold JS (2010) Influence of fire severity on stand development of Araucaria araucanaNothofagus pumilio stands in the Andean cordillera of south-central Chile. Austral Ecol 35:597–615CrossRefGoogle Scholar
  29. González ME, Veblen TT, Sibold JS (2005) Fire history of Araucaria-Nothofagus forests in Villarrica National Park, Chile. J Biogeogr 32:1187–1202CrossRefGoogle Scholar
  30. Hadad MA, Roig Juñent FA, Boninsegna JA, Patón-Domínguez D (2015) Age effects on the climatic signal in Araucaria araucana from xeric sites in Patagonia, Argentina. Plant Ecol Divers 8:343–351CrossRefGoogle Scholar
  31. Heusser C (1994) Paleoindians and fire during the late Quaternary in southern South America. Rev Chil Hist Nat 67:455–442Google Scholar
  32. Heusser CJ, Rabassa J, Brandani A (1988) Late-Holocene vegetation of the Andean Araucaria region, Province of Neuquén, Argentina. Mt Res Dev 8:53–63CrossRefGoogle Scholar
  33. Higuera PE, Brubaker LB, Anderson PM et al (2009) Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol Monogr 79:201–219. doi: 10.1890/07-2019.1 CrossRefGoogle Scholar
  34. Holz A, Méndez C, Borrero L, Prieto A, Torrejón F, Maldonado A (2016) Fires: the main human impact on past environments in Patagonia? PAGES Magazine 24:72–73. doi: 10.22498/pages.24.2.72
  35. Holz A (2009) Climatic and human influences on fire regime and forest dynamics in temperate rainforests in southern Chile. Department of Geography, University of Colorado, BoulderGoogle Scholar
  36. Holz A, Haberle S, Veblen TT et al (2012a) Fire history in western Patagonia from paired tree-ring fire-scar and charcoal records. Clim Past 8:451–466. doi: 10.5194/cp-8-451-2012 CrossRefGoogle Scholar
  37. Holz A, Kitzberger T, Paritsis J, Veblen TT (2012b) Ecological and climatic controls of modern wildfire activity patterns across southwestern South America. Ecosphere 3:art103. doi: 10.1890/ES12-00234.1 CrossRefGoogle Scholar
  38. Holz A, Veblen TT (2011a) Variability in the Southern Annular Mode determines wildfire activity in Patagonia. Geophys Res Lett 38:L14710CrossRefGoogle Scholar
  39. Holz A, Veblen TT (2011b) The amplifying effects of humans on fire regimes in temperate rainforests in western Patagonia. Palaeogeogr Palaeoclimatol Palaeoecol 311:82–92. doi: 10.1016/j.palaeo.2011.08.008 CrossRefGoogle Scholar
  40. Holz A, Veblen TT (2012) Wildfire activity in rainforests in western Patagonia linked to the Southern Annular Mode. Int J Wildland Fire 21:114–126CrossRefGoogle Scholar
  41. Holz A, Veblen TT (2009) Pilgerodendron uviferum: The southernmost tree-ring fire recorder species. Écoscience 16:322–329CrossRefGoogle Scholar
  42. Kitzberger T, Aráoz E, Gowda JH et al (2012) Decreases in fire spread probability with forest age promotes alternative community states, reduced resilience to climate variability and large fire regime shifts. Ecosystems 15:97–112. doi: 10.1007/s10021-011-9494-y CrossRefGoogle Scholar
  43. Kitzberger T, Perry GLW, Paritsis J et al (2016) Fire–vegetation feedbacks and alternative states: common mechanisms of temperate forest vulnerability to fire in southern South America and New Zealand. N Z J Bot 54:247–272. doi: 10.1080/0028825X.2016.1151903 CrossRefGoogle Scholar
  44. Kitzberger T, Steinaker DF, Veblen TT (2000) Effects of climatic variability on facilitation of tree establishment in northern Patagonia. Ecology 81:1914–1924CrossRefGoogle Scholar
  45. Kitzberger T, Veblen TT (1997) Influences of humans and ENSO on fire history of Austrocedrus chilensis woodlands in northern Patagonia, Argentina. Écoscience 4:508–520CrossRefGoogle Scholar
  46. Kitzberger T, Veblen TT, Villalba R (1997) Climatic influences on fire regimes along a rain forest-to-xeric woodland gradient in northern Patagonia, Argentina. J Biogeogr 24:35–47CrossRefGoogle Scholar
  47. LaMarche VC, Holmes RL, Donwiddie P, Drew L (1979) Tree-ring chronologies of the southern hemisphere: 1. University of Arizona, TucsonGoogle Scholar
  48. Lara A (1991) The dynamics and disturbance regimes of Fitzroya cupressoides forests in the south-central Andes of Chile. PhD Thesis, Department of Geography, University of ColoradoGoogle Scholar
  49. Lara A, Donoso ZC, Escobar B et al (2006) Pilgerodendron uviferum (D. Don) Florin. In: Donoso ZC (ed) Las especies arbóreas de los bosques templados de Chile y Argentina. Autoecología. Marisa Cúneo Ediciones, Valdivia, pp 82–91Google Scholar
  50. Lara A, Fraver S, Aravena JC, Wolodarsky-Franke A (1999) Fire and the dynamics of Fitzroya cupressoides (alerce) forests of Chile’s Cordillera Pelada. Écoscience 6:100–109CrossRefGoogle Scholar
  51. Lara A, Villalba R (1993) A 3620-year temperature record from Fitzroya cupressoides tree rings in Southern South America. Science 260:1104–1106CrossRefPubMedGoogle Scholar
  52. Lara A, Wolodarsky-Franke A, Aravena JC et al (2003) Fire regimes and forest dynamics in the Lake Region of south-central Chile. In: Veblen TT, Baker WL, Montenegro G, Swetnam TW (eds) Fire and climatic change in temperate ecosystems of the Western Americas. Springer, New York, pp 322–342CrossRefGoogle Scholar
  53. Mohr-Bell D (2015) Superficies afectadas por incendios en la región Bosque Andino Patagónico durante los veranos de 2013–2014 y 2014–2015. SAyDS-CIEFAP, Nodo Regional Bosque Andino PatagónicoGoogle Scholar
  54. Mundo IA, Kitzberger T, Roig Juñent FA et al (2013) Fire history in the Araucaria araucana forests of Argentina: Human and climate influences. Int J Wildland Fire 22:194–206. doi: 10.1071/WF11164 CrossRefGoogle Scholar
  55. Mundo IA, Roig Juñent FA, Villalba R et al (2012) Araucaria araucana tree-ring chronologies in Argentina: spatial growth variations and climate influences. Trees Struct Funct 26:443–458. doi: 10.1007/s00468-011-0605-3 CrossRefGoogle Scholar
  56. Mundo IA, Villalba R, Veblen TT, et al (2016) Fire history in Southern Patagonia: human and climate influences on fire activity in Nothofagus pumilio forests. In: Meeting Program and Abstracts—AmeriDendro 2016. Mendoza, Argentina, pp 38–39Google Scholar
  57. Paritsis J, Veblen TT, Holz A (2015) Positive fire feedbacks contribute to shifts from Nothofagus pumilio forests to fire-prone shrublands in Patagonia. J Veg Sci 26:89–101. doi: 10.1111/jvs.12225 CrossRefGoogle Scholar
  58. Quezada JM (2008) Historia de incendios en bosques de Araucaria araucana (Mol.) Koch del Parque Nacional Villarrica, a partir de anillos de crecimiento y registros orales. Tesina de grado, Universidad Austral de Chile, Facultad de Ciencias ForestalesGoogle Scholar
  59. Rovere A, Premoli AC, Newton AC (2002) Estado de conservación de Ciprés de las Guaitecas (Pilgerodendron uviferum [D Don] Florin) en Argentina. Bosque 23:11–20CrossRefGoogle Scholar
  60. Scheffer M, Carpenter S, Foley JA et al (2001) Catastrophic shifts in ecosystems. Nature 413:591–596. doi: 10.1038/35098000 CrossRefPubMedGoogle Scholar
  61. Szeicz JM, Haberle SG, Bennett KD (2003) Dynamics of North Patagonian rainforests from fine-resolution pollen, charcoal and tree-ring analysis, Chonos Archipelago, Southern Chile. Austral Ecol 28:413–422. doi: 10.1046/j.1442-9993.2003.01299.x CrossRefGoogle Scholar
  62. Tortorelli LA (1942) La explotación racional de los bosques de Araucaria de Neuquén. Su importancia económica. Sep Serv VI:1–74Google Scholar
  63. Urrutia R (2002) Desarrollo de una Cronología de Anchos de Anillos para Alerce (Fitzroya Cupressoides) y Reconstrucción de la Historia de Incendios en el Área de Abtao, Parque Nacional Chiloé, X Región. Tesis de Ingeniería Forestal, Pontificia Universidad Católica de Chile. BSc Forest Engineering thesis, Pontificia Universidad Católica de ChileGoogle Scholar
  64. Veblen TT (1982) Regeneration patterns in Araucaria araucana forests in Chile. J Biogeogr 9:11–28CrossRefGoogle Scholar
  65. Veblen TT, Ashton DH (1982) The regeneration status of Fitzroya cupressoides in the Cordillera Pelada, Chile. Biol Conserv 23:141–161CrossRefGoogle Scholar
  66. Veblen TT, Burns BR, Kitzberger T et al (1995) The ecology of the conifers of southern South America. In: Ecology of the Southern Conifers. Melbourne University Press, Parkville, pp 120–155Google Scholar
  67. Veblen TT, Donoso C, Kitzberger T, Rebertus AJ (1996) Ecology of Southern Chilean and Argentinean Nothofagus forests. In: Veblen TT, Hill RS, Read J (eds) The Ecology and Biogeography of Nothofagus forests. Yale University Press, New Haven, pp 293–353Google Scholar
  68. Veblen TT, Holz A, Paritsis J et al (2011) Adapting to global environmental change in Patagonia: what role for disturbance ecology? Austral Ecol 36:891–903. doi: 10.1111/j.1442-9993.2010.02236.x CrossRefGoogle Scholar
  69. Veblen TT, Kitzberger T, Raffaele E et al (2008) The historical range of variability of fires in the Andean–Patagonian Nothofagus forest region. Int J Wildland Fire 17:724–741. doi: 10.1071/WF07152 CrossRefGoogle Scholar
  70. Veblen TT, Kitzberger T, Villalba R, Donnegan J (1999) Fire history in Northern Patagonia: the roles of humans and climatic variation. Ecol Monogr 69:47–67CrossRefGoogle Scholar
  71. Veblen TT, Lorenz DC (1988) Recent vegetation changes along the forest/steppe ecotone of northern Patagonia. Ann Assoc Am Geogr 78:93–111CrossRefGoogle Scholar
  72. Villalba R, Veblen TT (1997) Regional patterns of tree population age structures in northern Patagonia: climate and disturbance influences. J Ecol 85:113–124CrossRefGoogle Scholar
  73. Walter KS, Gillet HJ (eds) (1998) 1997 IUCN Red List of Threatened Plants. IUCN, Gland/CambridgeGoogle Scholar
  74. Whitlock C, Moreno PI, Bartlein P (2007) Climatic controls of Holocene fire patterns in southern South America. Quat Res 68:28–36CrossRefGoogle Scholar
  75. Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–482. doi: 10.1890/070037 CrossRefGoogle Scholar
  76. Zaret K, Holz A (2016) Seedling performance of Pilgerodendron uviferum (Ciprés de las Guaitecas) in a burned peatland, lower Baker river watershed: implications for restoration. In: Abstract of VIII Southern Connection Congress. Punta Arenas, Chile.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratorio de Dendrocronología e Historia AmbientalIANIGLA-CONICET, CCT CONICET Mendoza, Av. Ruiz Leal s/n. CC330-M5502IRA MendozaPcia. de MendozaArgentina
  2. 2.Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Contreras 1300. M5502JMA MendozaPcia. de MendozaArgentina
  3. 3.Department of GeographyPortland State UniversityPortlandUSA
  4. 4.Facultad de Ciencias Forestales y Recursos NaturalesLaboratorio Ecología de Bosques, Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de ChileValdiviaChile
  5. 5.Laboratorio EcotonoINIBIOMA, CONICET-Universidad Nacional del ComahueBarilocheArgentina

Personalised recommendations