Dendroecology pp 185-210 | Cite as

Deciphering the Complexity of Historical Fire Regimes: Diversity Among Forests of Western North America

Part of the Ecological Studies book series (ECOLSTUD, volume 231)


Wildfire is a key disturbance agent in forests worldwide, but recent large and costly fires have raised urgent questions about how different current fire regimes are from those of the past. Dendroecological reconstructions of historical fire frequency, severity, spatial variability, and extent, corroborated by other lines of evidence, are essential in addressing these questions. Existing methods can infer the severity of individual fires and stand-level fire regimes. However, novel research designs combining evidence of stand-level fire severity with fire extent are now being used to reconstruct spatial variability in historical fire regimes and to quantify the relative abundance of fire severity classes across landscapes, thereby facilitating comparison with modern fire regimes. Here we review how these new approaches build on traditional analyses of fire scars and forest age structures by presenting four case studies from the western United States and Canada. Collectively they demonstrate the importance of ecosystem-specific research that can guide management aiming to safeguard human, cultural and biological values in fire-prone forests and enhance forest resilience to the cumulative effects of global environmental change. Dendroecological reconstructions, combined with multiple lines of corroborating evidence, are key for achieving this goal.


Fire history Fire scars Post-fire cohorts Simulation modeling Alberta Arizona British Columbia Colorado Oregon 


  1. Agee JK (1993) Fire ecology of Pacific Northwest forests. Island Press, Washington, DCGoogle Scholar
  2. Agee JK (1998) The landscape ecology of western forest fire regimes. Northwest Sci 72:24–34Google Scholar
  3. Amoroso MM, Daniels LD (2010) Cambial mortality in declining Austrocedrus chilensis forests: implications for stand dynamics studies. Can J For Res 40:885–893. doi: 10.1139/X10-042 CrossRefGoogle Scholar
  4. Amoroso MM, Daniels LD, Bataneih M et al (2011) Evidence of mixed-severity fires in the foothills of the Rocky Mountains of west-central Alberta, Canada. For Ecol Manag 262:2240–2249. doi: 10.1016/j.foreco.2011.08.016 CrossRefGoogle Scholar
  5. Applequist MB (1958) A simple pith locator for use with off-center increment cores. J For 56:141Google Scholar
  6. Baker WL, Veblen TT, Sherriff RL (2007) Fire, fuels and restoration of ponderosa pine–Douglas fir forests in the Rocky Mountains, USA. J Biogeogr 34:251–269. doi: 10.1111/j.1365-2699.2006.01592.x CrossRefGoogle Scholar
  7. Bowman DM, Balch JK, Artaxo P et al (2009) Fire in the earth system. Science 324:481–484. doi: 10.1126/science.1163886 CrossRefPubMedGoogle Scholar
  8. Brown PM, Swetnam TW (1994) A cross-dated fire history from coast redwood near Redwood National Park, California. Can J For Res 24:21–31. doi: 10.1139/x94-004 CrossRefGoogle Scholar
  9. Brown PM, Wu R (2005) Climate and disturbance forcing of episodic tree recruitment in a southwestern ponderosa pine landscape. Ecology 86:3030–3038. doi: 10.1890/05-0034 CrossRefGoogle Scholar
  10. Brown PM, Wienk CL, Symstad AJ (2008) Fire and forest history at Mount Rushmore. Ecol Appl 18:1984–1999. doi: 10.1890/07-1337.1 CrossRefPubMedGoogle Scholar
  11. Busse MD, Riegel GM (2009) Response of antelope bitter brush to repeated prescribed burning in Central Oregon ponderosa pine forests. For Ecol Manag 257:904–910. doi: 10.1016/j.foreco.2008.10.026 CrossRefGoogle Scholar
  12. Caprio AC, Swetnam TW (1995) Historic fire regimes along an elevational gradient on the west slope of the Sierra Nevada, California. In: Brown JK, Mutch RW, Spoon CW, Wakimoto RW (tech. coords) Proceedings of the symposium on fire in wilderness and park management: past lessons and future opportunities, Missoula, MT, USA, Mar 30–Apr 1, 1993. USDA Forest Service General Technical Report INT. pp 173–179Google Scholar
  13. Chavardès RD, Daniels LD (2016) Altered mixed-severity fire regime has homogenized montane forests of Jasper National Park. Int J Wildland Fire 25:433–444. doi: 10.1071/WF15048 Google Scholar
  14. Cherubini P, Fontana G, Rigling D et al (2002) Tree-life history prior to death: two fungal root pathogens affect tree growth differently. J Ecol 90:839–850. doi: 10.1046/j.1365-2745.2002.00715.x CrossRefGoogle Scholar
  15. Daniels LD, Dobry J, Klinka K et al (1997) Determining year of death of logs and snags of Thuja plicata in southwestern coastal British Columbia. Can J For Res 27:1132–1141CrossRefGoogle Scholar
  16. Dieterich JH, Swetnam TW (1984) Dendrochronology of a fire scarred ponderosa pine. For Sci 30:238–247Google Scholar
  17. Duncan R (1989) An evaluation of errors in tree-age estimates based on increment cores in kahikatea (Dacrycarpus dacrydioides). New Zeal. Nat Sci 16:31–37Google Scholar
  18. Ehle D, Baker WL (2003) Disturbance and stand dynamics in ponderosa pine forests in Rocky Mountain National Park, USA. Ecol Monogr 73:543–566. doi: 10.1890/03-4014 CrossRefGoogle Scholar
  19. Falk DA, Miller C, McKenzie D et al (2007) Cross-scale analysis of fire regimes. Ecosystems 10:809–823. doi: 10.1007/s10021-007-9070-7 CrossRefGoogle Scholar
  20. Falk DA, Heyerdahl EK, Brown PM et al (2011) Multiscale controls of historical fire regimes: new insights from fire scar networks. Front Ecol Environ 9:446–454. doi: 10.1890/100052 CrossRefGoogle Scholar
  21. Farris CA, Baisan CH, Falk DA et al (2010) Spatial and temporal corroboration of a fire-scar-based fire history in a frequently burned ponderosa pine forest. Ecol Appl 20:1598–1614. doi: 10.1890/09-1535.1 CrossRefPubMedGoogle Scholar
  22. Farris CA, Baisan CH, Falk DA et al (2013) A comparison of targeted and systematic fire-scar sampling for estimating historical fire frequency in southwestern ponderosa pine forests. Int J Wildland Fire 22:1021–1033. doi: 10.1071/WF13026 CrossRefGoogle Scholar
  23. Finney MA (2006) An overview of FlamMap fire modeling capabilities. In: Andrews PL, Butler BW (eds) Fuels management—how to measure success: conference proceedings, Portland, OR, 28–30 Mar 2006. USDA For. Serv. Proc. RMRS-P-41, Fort Collins, CO, pp 213–220Google Scholar
  24. Flannigan MD, Krawchuk MA, deGroot WJ et al (2009) Implication of changing climate for global wildland fire. Int J Wildland Fire 18:483–507. doi: 10.1071/WF08187 CrossRefGoogle Scholar
  25. Fritts HC, Swetnam TW (1989) Dendroecology: a tool for evaluating variations in past and present forest environments. Adv Ecol Res 19:111–188. doi: 10.1016/S0065-2504(08)60158-0 CrossRefGoogle Scholar
  26. Fulé PZ, Crouse JE, Heinlein TA et al (2003) Mixed-severity fire regime in a high-elevation forest of Grand Canyon, Arizona, USA. Landsc Ecol 18:465–486. doi: 10.1023/A:1026012118011 CrossRefGoogle Scholar
  27. Gartner MH, Veblen TT, Sherriff RL et al (2012) Proximity to grasslands influences fire frequency and sensitivity to climate variability in ponderosa pine forests of the Colorado Front Range. Int J Wildland Fire 21:562–571. doi: 10.1071/WF10103 CrossRefGoogle Scholar
  28. Geist JM, Cochran PH (1991) Influences of volcanic ash and pumice deposition on productivity of western interior forest soils. In: Harvey AE, Neuenschwander LF (eds) Proceedings: management and productivity of western-montane forest soils, Boise, ID, USA April 1990. USDA Forest Service General Technical Report INT-280. pp 82–89Google Scholar
  29. Greene GA, Daniels LD (2017) Spatial interpolation and mean fire interval analyses quantify historical burn metrics in mixed-severity fire regimes. Int J Wildland Fire 26(2):136–147. doi: 10.1071/WF16084 CrossRefGoogle Scholar
  30. Hagmann RK, Franklin JF, Johnson KN (2013) Historical structure and composition of ponderosa pine and mixed-conifer forests in south-central Oregon. For Ecol Manag 304:492–504. doi: 10.1016/j.foreco.2013.04.005 CrossRefGoogle Scholar
  31. Halofsky JE, Donato DC, Hibbs DE et al (2011) Mixed-severity fire regimes: lessons and hypotheses from the Klamath-Siskiyou Ecoregion. Ecosphere 2:1–19. doi: 10.1890/ES10-00184.1 CrossRefGoogle Scholar
  32. Heinselman ML (1973) Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota. Quat Res 3:329–382. doi: 10.1016/0033-5894(73)90003-3 CrossRefGoogle Scholar
  33. Hessburg PF, Salter RB, James KM (2007) Re-examining fire severity relations in pre-management era mixed conifer forests: inferences from landscape patterns of forest structure. Landsc Ecol 22:5–24. doi: 10.1007/s10980-007-9098-2 CrossRefGoogle Scholar
  34. Hessl AE, Miller J, Kernan JT et al (2007) Mapping paleo-fire boundaries from binary point data: comparing interpolation methods. Prof Geogr 59:87–104. doi: 10.1111/j.1467-9272.2007.00593.x CrossRefGoogle Scholar
  35. Heyerdahl EK, Brubaker LB, Agee JK (2001) Spatial controls of historical fire regimes: a multiscale example from the interior west, USA. Ecology 82:660–678. doi: 10.1890/0012-9658(2001)082[0660:SCOHFR]2.0.CO;2 CrossRefGoogle Scholar
  36. Heyerdahl EK, Lertzman K, Wong CM (2012) Mixed-severity fire regimes in dry forests of southern interior British Columbia, Canada. Can J For Res 42:88–98. doi: 10.1139/x11-160 CrossRefGoogle Scholar
  37. Heyerdahl EK, Loehman RA, Falk DA (2014) Mixed-severity fire in lodgepole pine dominated forests: are historical regimes sustainable on Oregon’s Pumice Plateau, USA? Can J For Res 44:593–603. doi: 10.1139/cjfr-2013-0413 CrossRefGoogle Scholar
  38. Johnson EA, Gutsell SL (1994) Fire frequency models, methods and interpretations. Adv Ecol Res 25:239–287CrossRefGoogle Scholar
  39. Johnson EA, Van Wagner CE (1985) The theory and use of two fire history models. Can J For Res 15:214–220. doi: 10.1139/x85-039 CrossRefGoogle Scholar
  40. Jones EL, Daniels LD (2012) Assessment of dendrochronological year-of-death estimates using permanent sample plot data. Tree-Ring Res 68:3–16. doi: 10.3959/2010-10.1 CrossRefGoogle Scholar
  41. Jonsson B, Holm S, Kallur H (1992) A forest inventory method based on density-adapted circular plot size. Scand J Forest Res 7:405–421. doi: 10.1080/02827589209382733 CrossRefGoogle Scholar
  42. Keeley JE, Zedler PH (1998) Evolution of life history in Pinus. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 219–250Google Scholar
  43. Kernan JT, Hessl AE (2010) Spatially heterogeneous estimates of fire frequency in ponderosa pine forests of Washington, USA. Fire Ecol 6:117–135. doi: 10.4996/fireecology.0603117 CrossRefGoogle Scholar
  44. Kipfmueller KF, Baker WL (1998) A comparison of three techniques to date stand-replacing fires in lodgepole pine forests. For Ecol Manag 104:171–177. doi: 10.1016/S0378-1127(97)00245-4 CrossRefGoogle Scholar
  45. Kitzberger T, Brown PM, Heyerdahl EK et al (2007) Contingent Pacific-Atlantic Ocean influence on multi-century wildfire synchrony over western North America. Proc Natl Acad Sci U S A 104:543–548. doi: 10.1073/pnas.0606078104 CrossRefPubMedGoogle Scholar
  46. Landres P, Morgan P, Swanson F (1999) Overview of the use of natural variability concepts in managing ecological systems. Ecol Appl 9:1179–1188. doi: 10.1890/1051-0761(1999)009[1179:OOTUON]2.0.CO;2 Google Scholar
  47. Lertzman K, Fall J, Dorner B (1998) Three kinds of heterogeneity in fire regimes: at the crossroads of fire history and landscape ecology. Northwest Sci 72:4–23Google Scholar
  48. Marcoux HM, Gergel SG, Daniels LD (2013) Mixed-severity fire regimes: How well are they represented by existing fire-regime classification systems? Can J For Res 43:658−668. doi: 10.1139/cjfr-2012-0449 CrossRefGoogle Scholar
  49. Marcoux HM, Daniels LD, Gergel SG et al (2015) Differentiating mixed- and high-severity fire regimes in mixed-conifer forests of the Canadian Cordillera. For Ecol Manag 341:45–58. doi: 10.1016/j.foreco.2014.12.027 CrossRefGoogle Scholar
  50. Margolis EQ, Swetnam TW, Allen CD (2007) A stand-replacing fire history in upper montane forests of the southern Rocky Mountains. Can J For Res 37:2227–2241. doi: 10.1139/X07-079 CrossRefGoogle Scholar
  51. Margolis EQ, Swetnam TW, Allen CD (2011) Historical stand-replacing fire in upper montane forests of the Madrean Sky Islands and Mogollon Plateau, Southwestern USA. Fire Ecol 7:88–107. doi: 10.4996/fireecology.0703088 CrossRefGoogle Scholar
  52. Mast JN, Veblen TT, Linhart YB (1998) Disturbance and climatic influences on age structure of ponderosa pine at the pine/grassland ecotone, Colorado Front Range. J Biogeogr 25:743–755. doi: 10.1046/j.1365-2699.1998.2540743.x CrossRefGoogle Scholar
  53. McBride JR (1983) Analysis of tree rings and fire scars to establish fire history. Tree-Ring Bull 43:51–67Google Scholar
  54. McKenzie D, Gedalof Z, Peterson DL et al (2004) Climatic change, wildfire, and conservation. Conserv Biol 18:890–902. doi: 10.1111/j.1523-1739.2004.00492.x CrossRefGoogle Scholar
  55. Moritz MA, Batllori E, Bradstock RA et al (2014) Learning to coexist with wildfire. Nature 515:58–66. doi: 10.1038/nature13946 CrossRefPubMedGoogle Scholar
  56. Mowat EL (1960) No serotinous cones on central Oregon lodgepole pine. J Forest 58:118–119Google Scholar
  57. Norton DA, Palmer JG, Ogden J (1987) Dendroecological studies in New Zealand, Part 1. An evaluation of tree age estimates based on increment cores. New Zeal J Bot 25:373–383. doi: 10.1080/0028825X.1987.10413355 CrossRefGoogle Scholar
  58. O’Connor CD, Falk DA, Lynch AM et al (2014) Fire severity, size, and climate associations diverge from historical precedent along an ecological gradient in the Pinaleño Mountains, Arizona, USA. For Ecol Manag 329:264–278. doi: 10.1016/j.foreco.2014.06.032 CrossRefGoogle Scholar
  59. Odion DC, Hanson CT, Arsenault A et al (2014) Examining historical and current mixed-severity fire regimes in ponderosa pine and mixed-conifer forests of western North America. PLoS One 9(2):e87852. doi: 10.1371/journal.pone.0087852 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Perry DA, Hessburg PF, Skinner CN et al (2011) The ecology of mixed severity fire regimes in Washington, Oregon, and Northern California. For Ecol Manag 262:703–717. doi: 10.1016/j.foreco.2011.05.004 CrossRefGoogle Scholar
  61. Preisler HK, Hicke JA, Ager AA, Hayes JL (2012) Climate and weather influences on spatial temporal patterns of mountain pine beetle populations in Washington and Oregon. Ecology 93:2421–2434. doi: 10.1890/11-1412.1 CrossRefPubMedGoogle Scholar
  62. Romme WR (1980) Fire history terminology—report of the ad hoc committee. In: Stokes M, Dietrich JH (eds) Proceedings of the Fire History Workshop; Ft Collins, CO, USA. USDA Forest Service General Technical Report RM-81. pp 135–137Google Scholar
  63. Ruha T, Landsberg J, Martin R (1996) Influence of fire on understory shrub vegetation in ponderosa pine stands. In: Barrow JR, McArthur DE, Sosebee RE, Tausch RJ (eds) Proceedings: Shrubland Ecosystem Dynamics in a Changing Environment, Las Cruces, NM, USA, May 1995. USDA Forest Service General Technical Report INT-GTR-338. pp 108–113Google Scholar
  64. Schoennagel T, Nelson CR (2011) Restoration relevance of recent National Fire Plan treatments in forests of the western United States. Front Ecol Environ 9:271–277. doi: 10.1890/090199 CrossRefGoogle Scholar
  65. Schoennagel T, Veblen TT, Romme W (2004) The interaction of fire, fuels, and climate across Rocky Mountain forests. Bioscience 54:661–676. doi: 10.1641/0006-3568(2004)054[0661:TIOFFA]2.0.CO;2 CrossRefGoogle Scholar
  66. Schoennagel T, Smithwick EAH, Turner MG (2008) Landscape heterogeneity following large fires: insights from Yellowstone National Park, U.S.A. Int J Wildland Fire 17:742–753. doi: 10.1071/WF07146 CrossRefGoogle Scholar
  67. Schoennagel TL, Sherriff RL, Veblen TT (2011) Fire history and tree recruitment in the Colorado Front Range upper montane zone: implications for forest restoration. Ecol Appl 21:2210–2222. doi: 10.1890/10-1222.1 CrossRefPubMedGoogle Scholar
  68. Sherriff RL, Veblen TT (2006) Ecological effects of changes in fire regimes in Pinus ponderosa ecosystems in the Colorado Front Range. J Veg Sci 17:705–718. doi: 10.1111/j.1654-1103.2006.tb02494.x Google Scholar
  69. Sherriff RL, Veblen TT (2007) A spatially-explicit reconstruction of historical fire occurrence in the ponderosa pine zone of the Colorado Front Range. Ecosystems 10:311–323. doi: 10.1007/s10021-007-9022-2 CrossRefGoogle Scholar
  70. Sherriff RL, Platt RV, Veblen TT et al (2014) Historical, observed, and modeled wildfire severity in montane forests of the Colorado Front Range. PLoS One 9:e106791. doi: 10.1371/journal.pone.0106971 CrossRefGoogle Scholar
  71. Sibold JS, Veblen TT, Gonzalez ME (2006) Spatial and temporal variation in historic fire regimes in subalpine forests across the Colorado Front Range in Rocky Mountain National Park, Colorado, USA. J Biogeogr 33:631–647. doi: 10.1111/j.1365-2699.2005.01404.x CrossRefGoogle Scholar
  72. Simpson M (2007) Forested plant associations of the Oregon East Cascades. USDA Forest Service, Pacific Northwest Region, Technical Paper R6-NR-ECOL-TP-032007Google Scholar
  73. Smith KT, Sutherland EK (2001) Terminology and biology of fire scars in selected central hardwoods. Tree-Ring Bull 57:141–147Google Scholar
  74. Smith KT, Arbellay E, Falk DA et al (2016) Macroanatomy and compartmentalization of recent fire scars in three North American conifers. Can J For Res 46:535–542. doi: 10.1139/cjfr-2015-0377 CrossRefGoogle Scholar
  75. Stephens SL, Fulé PZ (2005) Western pine forests with continuing frequent fire regimes: possible reference sites for management. J For 103:357–362Google Scholar
  76. Stephens SL, Agee JK, Fulé PZ et al (2013) Managing forests and fire in changing climates. Science 342:41–42. doi: 10.1126/science.1240294 CrossRefPubMedGoogle Scholar
  77. Stretch V, Gedalof Z, Cockburn J et al (2016) Sensitivity of reconstructed fire histories to detection criteria in mixed-severity landscapes. For Ecol Manag 379:61–69. doi: 10.1016/j.foreco.2016.08.009 CrossRefGoogle Scholar
  78. Swetnam T, Baisan C (1996) Historical fire regime patterns in the southwestern United States since AD 1700. In: Allen CD (ed) Fire effects in Southwestern forests: Proceedings of the 2nd La Mesa Fire Symposium. USDA Forest Service, Rocky Mountain Research Station, General Technical Report RM-GTR-286. pp 11–32Google Scholar
  79. Swetnam T, Allen C, Betancourt J (1999) Applied historical ecology: using the past to manage for the future. Ecol Appl 9:1189–1206. doi: 10.1890/1051-0761(1999)009[1189:AHEUTP]2.0.CO;2 CrossRefGoogle Scholar
  80. Swetnam TL, Falk DA, Hessl AE et al (2011) Reconstructing landscape pattern of historical fires and fire regimes. In: McKenzie D, Miller C, Falk DA (eds) The landscape ecology of fire. Springer Publishing, New York, pp 165–192CrossRefGoogle Scholar
  81. Taylor AH, Skinner CN (2003) Spatial patterns and controls on historical fire regimes and forest structure in the Klamath Mountains. Ecol Appl 13:704–719. doi: 10.1890/1051-0761(2003)013[0704:SPACOH]2.0.CO;2 CrossRefGoogle Scholar
  82. Tepley AL, Veblen TT (2015) Spatiotemporal fire dynamics in mixed-conifer and aspen forests in the San Juan Mountains of southwestern Colorado, USA. Ecol Monogr 85:583–603. doi: 10.1890/14-1496.1 CrossRefGoogle Scholar
  83. Turner MG (2010) Disturbance and landscape dynamics in a changing world. Ecology 91:2833–2849. doi: 10.1890/10-0097.1 CrossRefPubMedGoogle Scholar
  84. Van Horne ML, Fulé PZ (2006) Comparing methods of reconstructing fire history using fire scars in a southwestern United States ponderosa pine forest. Can J For Res 36:855–867. doi: 10.1139/x05-289 CrossRefGoogle Scholar
  85. Van Wagner CE (1978) Age-class distribution and the forest fire cycle. Can J For Res 8:220–227. doi: 10.1139/x78-034 CrossRefGoogle Scholar
  86. Vankat JL (2011) Post-1935 changes in forest vegetation of Grand Canyon National Park, Arizona, USA: Part 1—ponderosa pine forest. For Ecol Manag 261:309–325. doi: 10.1016/j.foreco.2010.05.026 CrossRefGoogle Scholar
  87. Veblen TT, Lorenz DC (1986) Anthropogenic disturbance and recovery patterns in montane forests, Colorado Front Range. Phys Geogr 7:1–24. doi: 10.1080/02723646.1986.10642278 Google Scholar
  88. Veblen TT, Lorenz DC (1991) The Colorado Front Range: a century of ecological change. University of Utah Press, Salt Lake CityGoogle Scholar
  89. Veblen TT, Kitzberger T, Donnegan J (2000) Climatic and human influence on fire regimes in ponderosa pine forests in the Colorado Front Range. Ecol Appl 10:1178–1195. doi: 10.1890/1051-0761(2000)010[1178:CAHIOF]2.0.CO;2 CrossRefGoogle Scholar
  90. Villalba R, Veblen TT (1997) Improving estimates of total tree ages based on increment core samples. Ecoscience 4:534–542. doi: 10.1080/11956860.1997.11682433 CrossRefGoogle Scholar
  91. Williams MA, Baker WL (2012) Spatially extensive reconstructions show variable-severity fire and heterogeneous structure in historical western United States dry forests. Glob Ecol Biogeogr 21:1042–1052. doi: 10.1111/j.1466-8238.2011.00750.x CrossRefGoogle Scholar
  92. Wong CM, Lertzman KP (2001) Error in estimating tree age: implications for studies of stand dynamics. Can J For Res 31:1262–1271. doi: 10.1139/x01-060 CrossRefGoogle Scholar
  93. Yocom Kent LL (2014) An evaluation of fire regime reconstruction methods. ERI Working Paper No. 32. Ecological Restoration Institute and Southwest Fire Science Consortium, Northern Arizona University, Flagstaff, AZ. 15 pGoogle Scholar
  94. Yocom Kent LL, Fulé PZ, Bunn WA et al (2015) Historical high-severity fire patches in mixed-conifer forests. Can J For Res 45:1587–1596. doi: 10.1139/cjfr-2015-0128 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverCanada
  2. 2.School of ForestryNorthern Arizona UniversityFlagstaffUSA
  3. 3.Department of GeographyHumboldt State UniversityArcataUSA
  4. 4.Rocky Mountain Research Station, Fire Sciences LaboratoryUSDA Forest ServiceMissoulaUSA

Personalised recommendations