Skip to main content

Creating a Buzz: Insect Outbreaks and Disturbance Interactions

  • Chapter
  • First Online:
Dendroecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 231))

Abstract

Dendroentochronology is the study of insect outbreaks as recorded in tree rings. This type of research has been going on in earnest since the 1950s but the number of publications has rapidly increased from the 1980s to the present. Most of the work has been completed in Canada and the United States with some important work in Europe and Asia. Insect outbreak studies have been conducted in Australasia and more recently in South America, but very little work has been done in Africa. From tree-ring research on insect outbreaks we have been able to document the outbreak dynamics of more than 20 species of insect around the world. Insects can be grouped into three classes based on their impacts on trees: defoliators, cambium feeders, and root parasites. Using tree rings, we have been able to document periodic occurrences of insect outbreaks, their effects on the volume of wood production, climatic triggers to outbreaks, and the spread of insect outbreaks across landscapes over decades to more than a millenium. Dendrochronologists are now exploring the interactions of multiple insect outbreak systems and their interactions with fire and weather phenomena. From this work, we can see that the cumulative effects of multiple disturbances can be greater than the individual effects and that one disturbance can hinder or enhance a different type of disturbance. Overall, dendroentochronologists have been able to demonstrate the important role of disturbances in natural systems and provide important insight into the management of these ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfaro RI (1995) An induced defense reaction in white spruce to attack by the white pine weevil, Pissodes strobi. Can J For Res 25(10):1725–1730. doi:10.1139/x95-186

    Article  Google Scholar 

  • Alfaro RI, MacDonald RN (1988) Effects of defoliation by the western false hemlock looper on Douglas-fir tree-ring chronologies. Tree Ring Bull 48:3–11

    Google Scholar 

  • Alfaro RI, Shepherd RF (1991) Tree-ring growth of interior Douglas-fir after one year’s defoliation by Douglas-fir tussock moth. For Sci 37(3):959–964

    Google Scholar 

  • Alfaro RI, Qiwei L, Vallentgoed J (1991) Diameter growth losses in western larch caused by larch casebearer defoliation. Western J Appl For 6(4):105–108

    Google Scholar 

  • Alfaro RI, Campbell R, Vera P, et al (2003) Dendroecological reconstruction of mountain pine beetle outbreaks in the Chilcotin Plateau of British Columbia. In Shore TL, Brooks JE, Stone JE (eds) Mountain Pine Beetle Symposium: challenges and solutions. Kelowna, BC. pp 245–256

    Google Scholar 

  • Alfaro RI, Campbell E, Hawkes BC (2010) Historical frequency, intensity and extent of mountain pine beetle disturbance in British Columbia, vol. 2009. Pacific Forestry Centre.

    Google Scholar 

  • Asshof R, Schweingruber FH, Wermelinger B (1999) Influence of a gypsy moth (Lymantria dispar L.) outbreak on radial growth and wood-anatomy of Spanish chestnut (Castanea sativa Mill.) in Ticino (Switzerland). Dendrochronologia 16–17:133–145

    Google Scholar 

  • Avcí M, Carus S (2005) The impact of cedar processionary moth [Tramatocampa ispartaensis Dog˘anlar & Avcí (Lepidoptera: Notodontidae)] outbreaks on radial growth of Lebanon cedar (Cedrus libani A. Rich.) trees in Turkey. J Pest Sci 78:91–98. doi:10.1007/s10340-004-0073-2

    Article  Google Scholar 

  • Axelson JN, Alfaro RI, Hawkes BC (2009) Influence of fire and mountain pine beetle on the dynamics of lodgepole pine stands in British Columbia, Canada. Forest Ecol Manage 257(9):1874–1882

    Article  Google Scholar 

  • Axelson JN, Alfaro RI, Hawkes BC (2010) Changes in stand structure in uneven-aged lodgepole pine stands impacted by mountain pine beetle epidemics and fires in central British Columbia. For Chron 86(1):87–99. doi:10.5558/tfc86087-1

    Article  Google Scholar 

  • Axelson JN, Bast A, Alfaro R et al (2014) Variation in wood anatomical structure of Douglas-fir defoliated by the western spruce budworm: a case study in the coastal-transitional zone of British Columbia, Canada. Trees 28(6):1837–1846. doi:10.1007/s00468-014-1091-1

    Article  Google Scholar 

  • Axelson JN, Smith DJ, Daniels LD, Alfaro RI (2015) Multicentury reconstruction of western spruce budworm outbreaks in central British Columbia, Canada. For Ecol Manag 335:235–248. doi:10.1016/j.foreco.2014.10.002

    Article  Google Scholar 

  • Bakaj F, Mietkiewicz M, Veblen TT, Kulakowski D (2016) The relative importance of tree and stand properties in predicting susceptibility to spruce beetle outbreak in the mid-20th century. Ecosphere 7(10):e01485. doi:10.1002/ecs2.1485

    Article  Google Scholar 

  • Baker WL, Veblen TT (1990) Spruce beetles and fires in the nineteenth-century subalpine forests of western Colorado, USA. Arct Alp Res 22(1):65–80. doi:10.2307/1551721

    Article  Google Scholar 

  • Baltensweiler W (1964) Zeiraphera griseana Hübner (Lepidoptera: Tortricidae) in the European Alps. A contribution to the problem of cycles. Can Entomol 96(5):792–800. doi:10.4039/Ent96792-5

    Article  Google Scholar 

  • Baltensweiler W, Weber UM, Cherubini P (2008) Tracing the influence of larch-bud-moth insect outbreaks and weather conditions on larch tree ring growth in Engadine, Switzerland. Oikos 117:161–172. doi:10.1111/j.2007.0030-1299.16117.x

    Article  Google Scholar 

  • Bebi P, Kulakowski D, Veblen TT (2003) Interactions between fire and spruce beetles in a subalpine Rocky Mountain forest landscape. Ecology 84(2):362–371

    Article  Google Scholar 

  • Berg EE, Henry JD, Fastie CL, De Volder AD, Matsuoka SM (2006) Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory: relationship to summer temperatures and regional differences in disturbance regimes. For Ecol Manage 227(3):219–232

    Article  Google Scholar 

  • Blais JR (1954) The recurrence of spruce budworm infestations in the past century in the Lac Seul area of northwestern Ontario. Ecology 35:62–71. doi:10.2307/1931405

    Article  Google Scholar 

  • Blais JR (1962) Collection and analysis of radial-growth data from trees for evidence of past spruce budworm outbreaks. For Chronicle 38(4):474–484

    Article  Google Scholar 

  • Blais JR (1965) Spruce budworm outbreaks in the past three centuries in the Laurentide Park, Quebec. For Sci 11:130–138

    Google Scholar 

  • Blais JR (1983) Trends in the frequency, extent, and severity of spruce budworm outbreaks in eastern Canada. Can J For Res 13:539–547. doi:10.1139/x83-079

    Article  Google Scholar 

  • Boulanger Y, Arseneault D (2004) Spruce budworm outbreaks in eastern Quebec over the last 450 years. Can J For Res 34(5):1035–1043. doi:10.1139/x03-269

    Article  Google Scholar 

  • Boulanger Y, Arseneault D, Morin H et al (2012) Dendrochronological reconstruction of spruce budworm (Choristoneura fumiferana) outbreaks in southern Quebec for the last 400 years. Can J For Res 42(7):1264–1276. doi:10.1139/x2012-069

    Article  Google Scholar 

  • Brubaker LB, Greene SK (1979) Differential effects of Douglas-fir tussock moth and western spruce budworm defoliation on radial growth of grand fir and Douglas-fir. Can J For Res 9(1):95–105. doi:10.1139/x79-016

    Article  Google Scholar 

  • Buntgen U, Frank D, Liebhold A et al (2009) Three centuries of insect outbreaks across the European Alps. New Phytol 182:929–941. doi:10.1111/j.1469-8137.2009.02825.x

    Article  PubMed  Google Scholar 

  • Čada V, Svoboda M, Janda P (2013) Dendrochronological reconstruction of the disturbance history and past development of the mountain Norway spruce in the Bohemian Forest, central Europe. For Ecol Manag 295:59–68. doi:10.1016/j.foreco.2012.12.037

    Article  Google Scholar 

  • Camarero JJ, Martín E, Gil-Pelegrín E (2003) The impact of a needleminer (Epinotia subsequana) outbreak on radial growth of silver fir (Abies alba) in the Aragón Pyrenees: a dendrochronological assessment. Dendrochronologia 21(1):3–12. doi:10.1078/1125-7865-00035

    Article  Google Scholar 

  • Campbell EM, Alfaro RI, Hawkes B (2007) Spatial distribution of mountain pine beetle outbreaks in relation to climate and stand characteristics: a dendroecological analysis. J Integr Plant Biol 49(2):168–178. doi:10.1111/j.1744-7909.2007.00423.x

    Article  Google Scholar 

  • Carroll AL, Taylor SW, Régnière J, Safranyik L (2003) Effect of climate change on range expansion by the mountain pine beetle in British Columbia. In: TL Shore et al (eds) Mountain Pine Beetle Symposium: challenges and solutions, Natural Resources Canada, Information Report BC-X-399, Kelowna, BC, 30–31 Oct 2003, pp 223–232

    Google Scholar 

  • Carus S (2004) Impact of defoliation by the pine processionary moth (Thaumetopoea pityocampa) on radial, height and volume growth of Calabria pine (Pinus brutia) trees in Turkey. Phytoparasitica 32:459–469. doi:10.1007/BF0298044

    Article  Google Scholar 

  • Carus S (2009) Effects of defoliation caused by the processionary moth on growth of Crimean pines in western Turkey. Phytoparasitica 37:105–114. doi:10.1007/s12600-008-0018-z

    Article  Google Scholar 

  • Carus S (2010) Effect of defoliation by the pine processionary moth (PPM) on radial, height and volume growth of Crimean pine (Pinus nigra) trees in Turkey. J Environ Biol 31(4):453–460

    PubMed  Google Scholar 

  • Carus S, Avci M (2005) Growth loss of Lebanon cedar (Cedrus libani) stands as related to periodic outbreaks of the cedar shoot moth (Dichelia cedricola). Phytoparasitica 33(1):33–48. doi:10.1007/BF02980923

    Article  Google Scholar 

  • Case RA, MacDonald GM (2003) Dendrochronological analysis of the response of tamarack (Larix laricina) to climate and larch sawfly (Pristiphora erichsonii) infestations in central Saskatchewan. Ecoscience 10(3):380–388. doi:10.1080/11956860.2003.11682787

    Article  Google Scholar 

  • Clark P, Speer JH, Winship L (2017) Identifying and separating Pandora moth outbreaks and climate from a 1500-Year long Ponderosa pine chronology from Central Oregon. Tree Ring Res 73(2)

    Google Scholar 

  • Delgado SC (2000) Aplicaciones estadísticas en estudios dendrocronológicos. In: Roig FA (ed) Dendrocronología en América Latina. EDIUNC, Mendoza, pp 79–102

    Google Scholar 

  • Dobbertin MK, Grissino-Mayer HD (2004) The online bibliography of dendrochronology. Dendrochronologia 21(2):85–90

    Article  Google Scholar 

  • Dulamsuren C, Hauck M, Leuschner HH, Leuschner C (2010) Gypsy moth-induced growth decline of Larix sibirica in a forest-steppe ecotone. Dendrochronologia 28(4):207–213. doi:10.1016/j.dendro.2009.05.007

    Article  Google Scholar 

  • Duncan DP, Hodson AC (1958) Influence of the forest tent caterpillar upon the aspen forests of Minnesota. For Sci 4:71–93

    Google Scholar 

  • Eisenhart KS, Veblen TT (2000) Dendroecological detection of spruce bark beetle outbreaks in northwestern Colorado. Can J For Res 30(11):1788–1798. doi:10.1139/x00-104

    Article  Google Scholar 

  • Erbilgin N, Ma C, Whitehouse C et al (2014) Chemical similarity between historical and novel host plants promotes range and host expansion of the mountain pine beetle in a naïve host ecosystem. New Phytol 201(3):940–950. doi:10.1111/nph.12573

    Article  PubMed  Google Scholar 

  • Esper J, Büntgen U, Frank DC, Nievergelt D, Liebhold A (2007) 1200 years of regular outbreaks in alpine insects. Proc R Soc Lond B: Biol Sci 274(1610):671–679

    Article  Google Scholar 

  • Flower A, Gavin DG, Heyerdahl EK et al (2014) Drought-triggered western spruce budworm outbreaks in the interior Pacific Northwest: a multi-century dendrochronological record. For Ecol Manag 324:16–27. doi:10.1016/j.foreco.2014.03.042

    Article  Google Scholar 

  • Fraver S, Seymour RS, Speer JH, White AS (2007) Dendrochronological reconstruction of spruce budworm outbreaks in northern Maine, USA. Can J For Res 37(3):523–529. doi:10.1139/X06-251

    Article  Google Scholar 

  • Girardin MP, Tardif J, Bergeron Y (2001) Radial growth analysis of Larix laricina from the Lake Duparquet area, Quebec, in relation to climate and larch sawfly outbreaks. Ecoscience 8(1):127–138. doi:10.1080/11956860.2001.11682638

    Article  Google Scholar 

  • de Graauw K (2012) Tree-ring analysis of outbreak dynamics across an insect’s entire range: the Pandora moth system. Thesis, Indiana State University

    Google Scholar 

  • Hadley KS (1994) The role of disturbance, topography, and forest structure in the development of a montane forest landscape. Bull Torrey Bot Club 121(1):47–61. doi:10.2307/2996883

    Article  Google Scholar 

  • Hart SJ, Veblen TT, Mietkiewicz N, Kulakowski D (2015) Negative feedbacks on bark beetle outbreaks: widespread and severe spruce beetle infestation restricts subsequent infestation. PLoS One 10(5):e0127975. doi:10.1371/journal.pone.0127975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hildahl V, Reeks WA (1960) Outbreaks of the forest tent caterpillar, Malacosoma disstria Hbn., and their effects on stands of trembling aspen in Manitoba and Saskatchewan. Can Entomol 92:199–209. doi:10.4039/Ent92199-3

    Article  Google Scholar 

  • Hogg EH, Brandt JP, Kochtubajda B (2002) Growth and dieback of aspen forests in northwestern Alberta, Canada, in relation to climate and insects. Can J For Res 32(5):823–832. doi:10.1139/x01-152

    Article  Google Scholar 

  • Hough FB (1882) The elements of forestry. Robert Clarke and Company, Cincinnati, p 381

    Google Scholar 

  • Hrinkevich K, Lewis KJ (2011) Northern range limit mountain pine beetle outbreak dynamics in mixed sub‐boreal pine forests of British Columbia. Ecosphere 2(10):1–16

    Article  Google Scholar 

  • Huang JG, Tardif J, Denneler B et al (2008) Tree-ring evidence extends the historic northern range limit of severe defoliation by insects in the aspen stands of western Quebec, Canada. Can J For Res 38(9):2535–2544. doi:10.1139/X08-080

    Article  Google Scholar 

  • Jardon Y, Filion L, Cloutier C (1994) Tree-ring evidence for endemicity of the larch sawfly in North America. Can J For Res 24(4):742–747. doi:10.1139/x94-098

    Article  Google Scholar 

  • Johnson WT, Lyon HH (1991) Insects that feed on trees and shrubs, 2nd edn. Cornell University Press Ithaca, New York, pp 490–492

    Google Scholar 

  • Jarvis DS, Kulakowski D (2015) Long‐term history and synchrony of mountain pine beetle outbreaks in lodgepole pine forests. J Biogeogr 42(6):1029–1039

    Article  Google Scholar 

  • Johnson WT, Lyon HH (1991) Insects that feed on trees and shrubs, 2nd edn. Cornell University Press Ithaca, New York, pp 490–492

    Google Scholar 

  • Krause C (1997) The use of dendrochronological material from buildings to get information about past spruce budworm outbreaks. Can J For Res 27(1):69–75. doi:10.1139/x96-168

    Article  Google Scholar 

  • Krause C, Morin H (1995) Impact of spruce budworm defoliation on the number of latewood tracheids in balsam fir and black spruce. Can J For Res 25(12):2029–2034. doi:10.1139/x95-219

    Article  Google Scholar 

  • Kucherov S (1991) The reconstruction of Lymantria dispar outbreaks by dendrochronological methods in the south Urals. In: Baranchikov YN, Mattson WJ, Hain FP, Payne TL (eds) Forest insect guilds: patterns of interaction with host trees. USDA Forest Service GTR NE-153. pp 205–206

    Google Scholar 

  • Kulakowski D, Jarvis D (2011) The influence of mountain pine beetle outbreaks on severe wildfires in northwestern Colorado and southern Wyoming: a look at the past century. For Ecol Manag 261(1):1686–1696. doi:10.1016/j.foreco.2011.07.016

    Article  Google Scholar 

  • Kulakowski D, Veblen TT (2002) Influences of fire history and topography on the pattern of a severe wind blowdown in a Colorado subalpine forest. J Ecol 90:806–819. doi:10.1046/j.1365-2745.2002.00722.x

    Article  Google Scholar 

  • Kulakowski D, Veblen TT (2006) The effect of fires on susceptibility of subalpine forests to a 19th century spruce beetle outbreak in western Colorado. Can J For Res 36(11):2974–2982. doi:10.1139/x06-182

    Article  Google Scholar 

  • Kulakowski D, Veblen TT (2015) Bark beetles and high-severity fires in Rocky Mountain subalpine forests. In: Mixed-high severity fires: ecosystem processes and biodiversity. Elsevier, San Francisco, pp 149–174

    Chapter  Google Scholar 

  • Kulakowski D, Veblen TT, Bebi P (2003) Effects of fire and spruce beetle outbreak legacies on the disturbance regime of a subalpine forest in Colorado. J Biogeogr 30:1445–1456. doi:10.1046/j.1365-2699.2003.00912.x

    Article  Google Scholar 

  • Kulakowski D, Jarvis D, Veblen TT, Smith J (2012) Stand-replacing fires reduce susceptibility to mountain pine beetle outbreaks in Colorado. J Biogeogr 39:2052–2060. doi:10.1111/j.1365-2699.2012.02748.x

    Article  Google Scholar 

  • Kulakowski D, Seidl R, Holeksa J et al (2016a) A walk on the wild side: disturbance dynamics and the conservation and management of European mountain forest ecosystems. For Ecol Manag 388:120–131. doi:10.1016/j.foreco.2016.07.037

    Article  Google Scholar 

  • Kulakowski D, Veblen TT, Bebi P (2016b) Fire severity controlled susceptibility to a 1940s spruce beetle outbreak in Colorado, USA. PLoS One 11(7):e0158138. doi:10.1371/journal.pone.0158138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurz WA, Dymond CC, Stinson G et al (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452(7190):987–990. doi:10.1038/nature06777

    Article  CAS  PubMed  Google Scholar 

  • Lewis KJ, Welsh C, Wong CM, Speer JH (2017) Pathogens, invasive species, and prognosis for the future. In: Amoroso MM, Daniels LD, Baker PJ, Camarero JJ (eds) Dendroecology: tree-ring analyses applied to ecological studies. Springer, Cham

    Google Scholar 

  • Lynch AM (2012) What tree-ring reconstruction tells us about conifer defoliator outbreaks. In: Barbosa P, Letourneau DK, Agrawal AA (eds) Insect outbreaks revisited. Wiley-Blackwell, Chichester, pp 126–154

    Chapter  Google Scholar 

  • Mason RR, Wickman BE, Paul HG (1997) Radial growth response of Douglas-fir and grand fir to larval densities of the Douglas-fir tussock moth and the western spruce budworm. For Sci 43:194–205

    Google Scholar 

  • Mazanec Z (1968) Influence of defoliation by the phasmatid Didymuria violescens on seasonal diameter growth and the pattern of growth rings in alpine ash. Aust For 32(1):3–14. doi:10.1080/00049158.1968.10675456

    Article  Google Scholar 

  • Morin H (1994) Dynamics of balsam fir forests in relation to spruce budworm outbreaks in the boreal zone of Quebec. Can J For Res 24(4):730–741. doi:10.1139/x94-097

    Article  Google Scholar 

  • Morin H, Laprise D, Bergeron Y (1993) Chronology of spruce budworm outbreaks near Lake Duparquet, Abitibi region, Quebec. Can J For Res 23(8):1497–1506. doi:10.1139/x93-189

    Article  Google Scholar 

  • Morin H, Laprise D, Simard AA et al (2009) Spruce budworm outbreak regimes in eastern North America. Ecosystem management in the boreal forest. In: Gauthier S, Vaillancourt MA, Leduc A, et al (eds) Presse de l’Université du Québec, Québec. pp 155–182.

    Google Scholar 

  • Morrow PA, LaMarche VC Jr (1978) Tree ring evidence for chronic Insect suppression of productivity in subalpine Eucalyptus. Science 201:1244–1246. doi:10.1126/science.201.4362.1244

    Article  CAS  PubMed  Google Scholar 

  • Muzika RM, Liebhold AM (1999) Changes in radial increment of host and nonhost tree species with gypsy moth defoliation. Can J For Res 29(9):1365–1373. doi:10.1139/x99-098

    Article  Google Scholar 

  • NRC (2016) Natural Resources Canada and National Forestry Database. http://nfdp.ccfm.org/data/graphs/graph_41_b_e.php. Accessed 9 Aug 2016

  • Paritsis J, Veblen TT (2011) Dendroecological analysis of defoliator outbreaks on Nothofagus pumilio and their relation to climate variability in the Patagonian Andes. Glob Chang Biol 17(1):239–253. doi:10.1111/j.1365-2486.2010.02255.x

    Article  Google Scholar 

  • Paritsis J, Veblen TT, Kitzberger T (2009) Assessing dendroecological methods to reconstruct defoliator outbreaks on Nothofagus pumilio in northwestern Patagonia, Argentina. Can J For Res 39(9):1617–1629. doi:10.1139/X09-085

    Article  Google Scholar 

  • Pohl KA, Hadley KS, Arabas KB (2006) Decoupling tree-ring signatures of climate variation, fire, and insect outbreaks in Central Oregon. Tree Ring Res 62(2):37–50. doi:10.3959/1536-1098-62.2.37

    Article  Google Scholar 

  • Priya PB, Bhat KM (1998) False ring formation in teak (Tectona grandis Lf) and the influence of environmental factors. For Ecol Manag 108(3):215–222. doi:10.1016/S0378-1127(98)00227-8

    Article  Google Scholar 

  • Raffa KF, Aukema BH, Bentz BJ et al (2008) Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58(6):501–517. doi:10.1641/B580607

    Article  Google Scholar 

  • Readshaw JL, Mazanec Z (1969) Use of growth rings to determine past phasmatid defoliations of alpine ash forests. Aust For 33(1):29–36. doi:10.1080/00049158.1969.10675483

    Article  Google Scholar 

  • Rolland C, Baltensweiler W, Petitcolas V (2001) The potential for using Larix decidua ring widths in reconstructions of larch budmoth (Zeiraphera diniana) outbreak history: dendrochronological estimates compared with insect surveys. Trees 15(7):414–424. doi:10.1007/s004680100116

    Article  Google Scholar 

  • Safranyik L, Carroll AL (2006) The biology and epidemiology of the mountain pine beetle in lodgepole pine forests. In: Safranyik L, Wilson WR (eds) The mountain pine beetle: a synthesis of biology, management, and impacts on lodgepole pine. Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, British Columbia, 304 p

    Google Scholar 

  • Safranyik L, Wilson B (2007) The mountain pine beetle: a synthesis of biology, management and impacts on lodgepole pine. Canadian Forest Service, Victoria. ISBN:0662426231

    Google Scholar 

  • Safranyik L, Carroll AL, Wilson B (2007) The biology and epidemiology of the mountain pine beetle in lodgepole pine forests. In: The mountain pine beetle: a synthesis of biology, management and impacts on lodgepole pine. Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, pp 3–66

    Google Scholar 

  • Sarajishvili KG (1997) Dendrochronological indication of entomoresistance in Pinus eldarica against Dioryctria slyvestrella Ratz (Lepidoptera, Pyralidae) in Georgia. Acta Phytopathol Entomol Hung 32(1–2):245–250

    Google Scholar 

  • Schmid JM, Bennett DD (1988) The North Kaibab pandora moth outbreak, 1978–1984. USDA Forest Service Rocky Mountain Forest and Range Experimental Station Research Note RM-153

    Google Scholar 

  • Schoennagel T, Veblen TT, Negron JF, Smith JM (2012) Effects of mountain pine beetle on fuels and expected fire behavior in lodgepole pine forests, Colorado, USA. PLoS One 7(1):e30002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherriff RL, Berg EE, Miller AE (2011) Climate variability and spruce beetle (Dendroctonus rufipennis) outbreaks in south‐central and southwest Alaska. Ecology 92(7):1459–1470

    Article  PubMed  Google Scholar 

  • Shore TL, Safranyik L, Hawkes BC, Taylor SW (2006) Effects of the mountain pine beetle on lodgepole pine stand structure and dynamics. In: Safranyik L, Wilson B (eds) The mountain pine beetle: a synthesis of biology, management, and impacts on lodgepole pine. Canadian Forest Service, Victoria, pp 95–114

    Google Scholar 

  • Simard M, Payette S (2003) Accurate dating of spruce budworm infestation using tree growth anomalies. Ecoscience 10(2):204–216. doi:10.1080/11956860.2003.11682768

    Article  Google Scholar 

  • Simard S, Elhani S, Morin H et al (2008) Carbon and oxygen stable isotopes from tree-rings to identify spruce budworm outbreaks in the boreal forest of Québec. Chem Geol 252(1):80–87. doi:10.1016/j.chemgeo.2008.01.018

    Article  CAS  Google Scholar 

  • Smith AL, Hewitt N, Klenk N, Bazely DR, Yan N, Wood S, Henriques I, MacLellan JI, Lipsig-Mummé C (2012) Effects of climate change on the distribution of invasive alien species in Canada: a knowledge synthesis of range change projections in a warming world. Environ Rev 20(1):1–16

    Article  Google Scholar 

  • Speer JH (1997) A dendrochronological record of Pandora Moth (Coloradia pandora, Blake) outbreaks in Central Oregon. Thesis, The University of Arizona

    Google Scholar 

  • Speer JH (2010) Fundamentals of tree-ring research. University of Arizona Press, Tucson

    Google Scholar 

  • Speer JH, Holmes RL (2004) Effects of pandora moth outbreaks on ponderosa pine wood volume. Tree Ring Res 60(2):69–76. doi:10.3959/1536-1098-60.2.69

    Article  Google Scholar 

  • Speer JH, Jensen RR (2003) A hazards approach towards modelling pandora moth risk. J Biogeogr 30(12):1899–1906. doi:10.1111/j.1365-2699.2003.00951.x

    Article  Google Scholar 

  • Speer JH, Swetnam TW, Wickman BE et al (2001) Changes in pandora moth outbreak dynamics during the past 622 years. Ecology 82:679–697. doi:10.1890/0012-9658(2001)082[0679:CIPMOD]2.0.CO;2

    Article  Google Scholar 

  • Speer JH, Clay K, Bishop G et al (2010) The effect of periodical cicadas on growth of five tree species in midwestern deciduous forests. Am Midl Nat 164(2):173–186. doi:10.1674/0003-0031-164.2.173

    Article  Google Scholar 

  • Studhalter RA (1955) Tree growth: some historical chapters. Bot Rev 21(1–3):1–72

    Article  Google Scholar 

  • Sutton A, Tardif J (2005) Distribution and anatomical characteristics of white rings in Populus tremuloides. IAWA J 26(2):221–238

    Google Scholar 

  • Sutton A, Tardif JC (2007) Dendrochronological reconstruction of forest tent caterpillar outbreaks in time and space, western Manitoba, Canada. Can J For Res 37(9):1643–1657

    Article  Google Scholar 

  • Sviderskaya IV, Pal’nikova EN (2003) Radial growth of Pinus sylvestris trees related to defoliation by Bupalus piniarius. Lesovedenie 5:44–53. doi:10.1139/X07-021

    Google Scholar 

  • Svoboda M, Janda P, Nagel TA et al (2012) Disturbance history of an old-growth sub-alpine Picea abies stand in the Bohemian Forest, Czech Republic. J Veg Sci 23(1):86–97. doi:10.1111/j.1654-1103.2011.01329.x

    Article  Google Scholar 

  • Swetnam TW (1987) A dendrochronological assessment of western spruce budworm (Choristoneura occidentalis Freeman) in the Southern Rocky Mountains (Colorado, New Mexico). Dissertation, The University of Arizona

    Google Scholar 

  • Swetnam TW, Betancourt JL (1998) Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. J Clim 11:3128–3147. doi:10.1175/1520-0442(1998)011<3128:MDAERT>2.0.CO;2

    Article  Google Scholar 

  • Swetnam TW, Lynch AM (1989) A Tree-Ring reconstruction of western spruce budworm outbreaks in the Southern Rocky Mountains. For Sci 35(4):962–986

    Google Scholar 

  • Swetnam TW, Lynch AM (1993) Multi-century, regional-scale patterns of western spruce budworm history. Ecol Monogr 63(4):399–424. doi:10.2307/2937153

    Article  Google Scholar 

  • Swetnam TW, Thompson MA, Sutherland EK (1985) Using dendrochronology to measure radial growth of defoliated trees, USDA Forest Service Agriculture Handbook, vol 639. USDA Forest Service, Washington, DC

    Google Scholar 

  • Swetnam TW, Wickman BE, Paul HG, Baisan CH (1995) Historical patterns of western spruce budworm and Douglas-fir tussock moth outbreaks in the northern Blue Mountains, Oregon, since AD 1700 Pacific Northwest Research Station PNW-RP-484

    Google Scholar 

  • USDA (2016) USDA Forest Service Aerial Detection Survey. http://www.fs.usda.gov/detail/r2/forest-grasslandhealth/?cid=stelprdb5408531. Accessed 9 Aug 2016

  • Veblen TT, Hadley KS, Reid MS, Rebertus AJ (1991a) Methods of detecting past spruce beetle outbreaks in Rocky Mountain subalpine forests. Can J For Res 21(2):242–254

    Article  Google Scholar 

  • Veblen TT, Hadley KS, Reid MS, Rebertus AJ (1991b) The response of subalpine forests to spruce beetle outbreak in Colorado. Ecology 72(1):213–231

    Article  Google Scholar 

  • Veblen TT, Hadley KS, Nel EM et al (1994) Disturbance regime and disturbance interactions in a Rocky Mountain Subalpine Forest. J Ecol 82(1):125–135. doi:10.2307/2261392

    Article  Google Scholar 

  • Weber UM (1997) Dendroecological reconstruction and interpretation of larch budmoth (Zeiraphera diniana) outbreaks in two central alpine valleys of Switzerland from 1470–1990. Trees 11(5):277–290. doi:10.1007/PL00009674

    Google Scholar 

  • Wickman BE (1963) Mortality and growth reduction of white fir following defoliation by the Douglas-fir tussock moth USDA Forest Service Research Paper PSW-7

    Google Scholar 

  • Wickman BE (1980) Increased growth of white fire after a Douglas-fir tussock moth outbreak. J For 78:31–33

    Google Scholar 

  • Wimmer R (2001) Arthur Freiherr von Sechendorff-Gudent and the early history of tree-ring crossdating. Dendrochronologia 19(1):153–158

    Google Scholar 

  • Zhang QB, Alfaro RI (2002) Periodicity of two-year cycle spruce budworm outbreaks in central British Columbia: a dendro-ecological analysis. For Sci 48(4):722–731

    Google Scholar 

  • Zhang QB, Alfaro RI (2003) Spatial synchrony of the two‐year cycle budworm outbreaks in central British Columbia, Canada. Oikos 102(1):146–154

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by multiple National Science Foundation grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Speer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Speer, J.H., Kulakowski, D. (2017). Creating a Buzz: Insect Outbreaks and Disturbance Interactions. In: Amoroso, M., Daniels, L., Baker, P., Camarero, J. (eds) Dendroecology. Ecological Studies, vol 231. Springer, Cham. https://doi.org/10.1007/978-3-319-61669-8_10

Download citation

Publish with us

Policies and ethics