Skip to main content

The Role of Halogens During Fluid and Magmatic Processes on Mars

  • Chapter
  • First Online:
The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes

Part of the book series: Springer Geochemistry ((SPRIGEO))

Abstract

The geochemistry of halogens on Mars gives insight into the composition of the martian mantle, igneous evolution of the martian crust, aqueous processes on the martian surface, and the overall habitability of the planet. Halogen abundances have been measured from martian meteorites, in situ by landers and rovers , and from orbital missions around Mars. The bulk rock abundances of halogens have been determined for many martian meteorite samples including all petrological five types (nakhlites, chassignites , shergottites , orthopyroxenites, and regolith breccias) . Measurements of basaltic martian meteorites (i.e., shergottites and regolith breccias) provide important insights into halogen abundances in mantle and crustal reservoirs. Fluorine, Cl, Br, and I have been detected in silicate, phosphate, sulfate, oxide, and halide group minerals in martian meteorites. These halogen-bearing minerals are found in melt inclusions, as secondary hydrothermal or aqueous alteration products, or in the interstices between cumulus igneous silicates. Measurements from meteorites and from martian missions indicate that Cl is the most abundant halogen on and in Mars. Measurements from landed missions suggest that Cl is commonly present in oxychlorine compounds (e.g., perchlorate and chlorate salts) , whereas measurements from orbit have identified both oxychlorine minerals and halite. Halite is constrained to local depressions in the ancient southern highlands, suggesting precipitation from the evaporation of water in closed basins at ~3.5–4 Ga. The presence of oxychlorine minerals on the martian surface has important implications for the habitability of present day Mars because oxychlorine minerals may deliquesce to create seasonal deposits of liquid water. Furthermore, oxychlorine compounds are considered both a resource and potential hazard to the eventual human exploration of Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abramov O, Kring DA (2005) Impact-induced hydrothermal activity on early Mars. J Geophys Res 110(E12). https://doi.org/10.1029/2005JE002453

  • Acuña MH, Connerney JEP, Ness NF et al (1999) Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science 284:790–793

    Article  Google Scholar 

  • Agee CB, Wilson NV, McCubbin FM et al (2013) Unique meteorite from early Amazonian Mars: water-rich basaltic Breccia Northwest Africa 7034. Science 339:780–785

    Article  Google Scholar 

  • Aharonson O, Bardavid RE, Mana L (2014) Perchlorate and halophilic prokaryotes; Implications for possible halophilic life on Mars. Extremophiles 18:75–80

    Article  Google Scholar 

  • Aiuppa A, Baker DR, Webster JD (2009) Halogens in volcanic systems. Chem Geol 263:1–18

    Article  Google Scholar 

  • Aoudjehane HC, Jambon A, Boudouma O (2006) A cathodoluminescence study of cristobalite and K-feldspar in the nakhlite Mil 03346. Meteorit Planet Sci 41(8):A37

    Google Scholar 

  • Archer PD Jr, Franz HB, Sutter B et al (2014) Abundances and implications of volatile-bearing species from evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars. J Geophys Res Planets 119:237–254. https://doi.org/10.1002/2013JE004493

  • Archer PD Jr, Ming DW, Sutter B et al (2016) Oxychlorine species on Mars: implications from Gale crater samples. Paper presented at the 47th lunar and planetary science conference, The Woodlands, TX, 21–25 March 2016

    Google Scholar 

  • Barbieri R, Stivaletta N, Marinangeli L, Ori GG (2006) Microbial signatures in sabkha evaporate deposits of Chott el Gharsa (Tunisia) and their astrobiological implications. Planet Space Sci 54:726–736. https://doi.org/10.1016/j.pss.2006.04.003

  • Bibring J-P, Langevin Y, Mustard JF et al (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312(5772):400–404

    Article  Google Scholar 

  • Blake DF, Vaniman D, Achilles C et al (2012) Characterization and calibration of the CheMin mineralogical instrument on Mars Science Laboratory. Space Sci Rev 170:341–399

    Article  Google Scholar 

  • Boctor NZ, Alexander CMO, Wang J, Hauri E (2003) The sources of water in martian meteorites: clues from hydrogen isotopes. Geochim Cosmochim Acta 67:3971–3989

    Article  Google Scholar 

  • Bogard DD, Garrison DH, Park J (2010) Chlorine abundances in martian meteorites. Paper presented at the 41st lunar and planetary science conference, The Woodlands, TX, 1–5 March 2010

    Google Scholar 

  • Borg LE, Draper DS (2003) A petrogenetic model for the origin and compositional variation of the martian basaltic meteorites. Meteorit Planet Sci 38:1713–1731

    Article  Google Scholar 

  • Boynton WV, Ming DW, Kounaves SP et al (2009) Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science 325:61–64. https://doi.org/10.1126/science.1172768

  • Bridges JC, Grady MM (1999) A halite-siderite-anhydrite-chlorapatite assemblage in Nakhla: mineralogical evidence for evaporites on Mars. Meteorit Planet Sci 34(3):407–415

    Article  Google Scholar 

  • Bridges JC, Grady MM (2000) Evaporite mineral assemblages in the nakhlite (martian) meteorites. Earth Planet Sci Lett 176:267–279

    Article  Google Scholar 

  • Bridges JC, Schwenzer SP (2012) The nakhlite hydrothermal brine on Mars. Earth Planet Sci Lett 359–360:117–123

    Article  Google Scholar 

  • Bridges JC, Catling DC, Saxton JM et al (2001) Alteration assemblages in Martian meteorites: implications for near-surface processes. Space Sci Rev 96:365–392

    Article  Google Scholar 

  • Brown GM, Gu B (2006) The chemistry of perchlorate in the environment. In: Gu B, Coates JD (eds) Perchlorate, environmental occurrence, interactions and treatment. Springer, New York, pp 17–47

    Google Scholar 

  • Bunch TE, Reid AM (1975) The Nakhlites, part 1. Petrography and mineral chemistry. Meteoritics 10:303–315

    Google Scholar 

  • Burgess R, Cartwright JA, Filiberto J (2013) Halogen abundances of the martian mantle. Geochim Cosmochim Acta 77:793

    Google Scholar 

  • Carr MH (1995) The Martian drainage system and the origin of valley networks and fretted channels. J Geophys Res 100(E4):7479–7507. https://doi.org/10.1029/95JE00260

  • Carrier BL, Kounaves SP (2015) The origins of perchlorate in the Martian soil. Geophys Res Lett 42:3739–3745. https://doi.org/10.1002/2015GL064290

  • Carter J, Poulet F, Bibring J-P et al (2013) Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view. J Geophys Res Planets 118(4):831–858

    Article  Google Scholar 

  • Cartwright JA, Burgess R (2011) Ar-Ar crystallisation ages of shergottite RBT 04262 mineral separates. Paper presented at the 74th annual meeting of the Meteoritical Society, London, UK, 8–12 August 2011

    Google Scholar 

  • Cartwright JA, Gilmour JD, Burgess R (2009) Halogens in Martian Shergottite RBT 04262. Paper presented at the 40th lunar and planetary science conference, The Woodlands, TX, 23–27 March 2009

    Google Scholar 

  • Cartwright JA, Gilmour JD, Burgess R (2013) Martian fluid and Martian weathering signatures identified in Nakhla, NWA 998 and MIL 03346 by halogen and noble gas analysis. Geochim Cosmochim Acta 105:255–293

    Article  Google Scholar 

  • Catling DC, Claire MW, Zahnle KJ et al (2010) Atmospheric origins of perchlorate on Mars and the Atacama. J Geophys Res Planets 115(E1). https://doi.org/10.1029/2009JE003425

  • Changela HG, Bridges JC (2010) Secondary minerals in the nakhlites formed at varying depth in an impact hydrothermal cell. Paper presented at the 41st lunar and planetary science conference, The Woodlands, TX, 1–5 March 2010

    Google Scholar 

  • Chevrier VF, Rivera-Valentin EG (2012) Formation of recurring slope lineae by liquid brines on present-day Mars. Geophys Res Lett 39(21). https://doi.org/10.1029/2012GL054119

  • Chevrier VF, Hanley J, Altheide TS (2009) Stability of perchlorate hydrates and their liquid solutions at the Phoenix landing site, Mars. Geophys Res Lett 36(10). https://doi.org/10.1029/2009GL037497

  • Clark BC, Baird AK (1973) Martian regolith X-ray analyzer: test results of geochemical performance. Geology 1:15–18. https://doi.org/10.1130/0091-7613(1973)1<15:MRXATR>2.0.CO;2

  • Clark BC, Baird AK (1979) Is the martian lithosphere Sulfur rich? Geophys Res Lett 84:8395–8403

    Article  Google Scholar 

  • Clark BC, Baird AK, Rose HJ Jr et al (1977) The Viking X ray fluorescence experiment: analytical methods and early results. J Geophys Res 82:4577–4594

    Article  Google Scholar 

  • Clark BC, Baird AK, Weldon J et al (1982) Chemical composition of martian fines. J Geophys Res 87:10059–10067. https://doi.org/10.1029/JB087iB12p10059

  • Clark BC, Morris RV, McLennan SM et al (2005) Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet Sci Lett 240(1):73–94. https://doi.org/10.1016/j.epsl.2005.09.040

  • Davila AF, Gómez-Silva B, de Los Rios A et al (2008) Facilitation of endolithic microbial survival in the hyperarid core of the Atacama Desert by mineral deliquescence. J Geophys Res 113:2005–2012

    Article  Google Scholar 

  • Davila AF, Wilson D, Coates JD, McKay CP (2013a) Perchlorate on Mars: a chemical hazard and a resource for humans. Int J Astrobio 12:321–325. https://doi.org/10.1017/S1473550413000189

  • Davila AF, Hawes I, Ascaso C, Wierzchos J (2013b) Salt deliquescence drives photosynthesis in hyperarid Atacama Desert. Environ Microbiol Rep 5:583–587

    Article  Google Scholar 

  • Dreibus G, Wänke H (1985) Mars, a volatile-rich planet. Meteoritics 20:367–381

    Google Scholar 

  • Dreibus G, Wänke H (1987) Volatiles on Earth and Mars: a comparison. Icarus 71:225–240

    Article  Google Scholar 

  • Dreibus G, Spettel B, Wlotzka F et al (1996) QUE94201: an unusual martian basalt. Meteorit Planet Sci 31:A39–A40

    Google Scholar 

  • Dreibus G, Spettel B, Haubold R et al (2000) Chemistry of a new shergottite: Sayh al Uhaymir 005. Meteorit Planet Sci 35:A49

    Google Scholar 

  • Dreibus G, Haubold R, Huisl W, Spettel B (2003) Comparison of the chemistry of Yamato 980459 with DaG 476 and SaU 005. In: International symposium, evolution of solar system materials: a new perspective from Antarctic meteorites. National Institute of Polar Research (NIPR), Tokyo, pp 19–20

    Google Scholar 

  • Dreibus G, Huisl W, Spettel B, Haubold R (2006) Halogens in nakhlites: studies of pre-terrestrial and terrestrial weathering processes. Paper presented at the 37th lunar and planetary science conference, League City, TX, 13–17 March 2006

    Google Scholar 

  • Ehlmann BL, Mustard JF, Murchie SL et al (2011) Subsurface water and clay mineral formation during the early history of Mars. Nature 479:53–60. https://doi.org/10.1038/nature10582

  • Farley KA, Martin P, Archer PD Jr et al (2016) Light and variable 37Cl/35Cl ratios in rocks from Gale crater, Mars: possible signature of perchlorate. Earth Planet Sci Lett 438:14–24. https://doi.org/10.1016/j.epsl.2015.12.013

  • Filiberto J, Treiman AH (2009a) Martian magmas contained abundant chlorine, but little water. Geology 37:1087–1090

    Article  Google Scholar 

  • Filiberto J, Treiman AH (2009b) The effect of chlorine on the liquidus of basalt: first results and implications for basalt genesis on Mars and Earth. Chem Geol 263:60–68

    Article  Google Scholar 

  • Filiberto J, Treiman AH, Giesting PA et al (2014) High-temperature chlorine-rich fluid in the martian crust: a precursor to habitability. Earth Planet Sci Lett 401:110–115

    Article  Google Scholar 

  • Filiberto J, Gross J, McCubbin FM (2016) Constraints on the water, chlorine, and fluorine content of the Martian mantle. Meteorit Planet Sci 51:2023–2035

    Article  Google Scholar 

  • Fish SA, Shepherd TJ, McGenity TJ, Grant WD (2002) Recovery of 16S ribosomal RNA gene fragments of ancient halite. Nature 417:432–436. https://doi.org/10.1038/417432a

  • Floran RJ, Prinz M, Hlava PF et al (1977) Chassigny meteorite—cumulate dunite with hydrous amphibole-bearing melt inclusions. Meteoritics 12:225

    Google Scholar 

  • Foley CN, Economou T, Clayton RN (2003) Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer. J Geophys Res 108(E12). https://doi.org/10.1029/2002JE002019

  • Forni O, Gaft M, Toplis MJ et al (2015) First detection of fluorine on Mars: implications for Gale crater’s geochemistry. Geophys Res Lett 42(4):1020–1028. https://doi.org/10.1002/2014GL062742

  • Forni O, Nachon M, Mangold N et al (2016) Fluorine in the Pahrump outcrop, Gale crater: implications for fluid circulation and alteration. Paper presented at the 47th lunar and planetary science conference, The Woodlands, TX, 21–25 March 2016

    Google Scholar 

  • Forni O, Meslin P-Y, L’Haridon J et al (2017) Detection of fluorine-rich phases, phosphates and halite in the Stimson-Murray units, Gale crater, Mars. Paper presented at the 48th lunar and planetary science conference, The Woodlands, TX, 20–24 March 2017

    Google Scholar 

  • Fredrickson JK, Chandler DP, Onstott TC (1997) Potential for preservation of halobacterial and their macromolecular constituents in bring inclusions from bedded salt deposits. In: Optical science, engineering and instrumentation ’97. International Society for Optics and Photonics, pp 318–329

    Google Scholar 

  • Fressinet C, Glavin DP, Mahaffy PR et al (2015) Organic molecules in the Sheepbed mudstone, Gale crater, Mars. J Geophys Res Planets 120(3):495–514. https://doi.org/10.1002/2014JE004737

  • Gellert R, Rieder R, Brückner J et al (2006) Alpha Particle X-Ray Spectrometer (APXS): results from Gusev crater and calibration report. J Geophys Res 111(E2). https://doi.org/10.1029/2005JE002555

  • Glavin DP, Freissinet C, Miller KE et al (2013) Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. J Geophys Res Planets 118(10):1955–1973. https://doi.org/10.1002/jgre.20144

  • Glotch TD, Bandfield JL, Tornabene LL et al (2010) Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars. Geophys Res Lett 37(16). https://doi.org/10.1029/2010GL044557

  • Glotch TD, Bandfield JL, Wolff MJ et al (2016) Constraints on the composition and particle size of chloride salt-bearing deposits on Mars. J Geophys Res 121(3):454–471. https://doi.org/10.1002/2015JE004921

  • Gough RV, Chevrier VF, Baustian KJ et al (2011) Laboratory studies of perchlorate phase transitions: support for metastable aqueous perchlorate solutions on Mars. Earth Planet Sci Lett 312(3–4):371–377. https://doi.org/10.1016/j.epsl.2011210.026

  • Greenwood JP (2008) Gypsum and jarosite in Roberts Massif 04262: Antarctic(?) weathering as a proxy for Martian weathering. Paper presented at the 39th lunar and planetary science conference, League City, TX, 10–14 March 2008

    Google Scholar 

  • Greenwood JP, Itoh S, Sakamoto N et al (2008) Hydrogen isotope evidence for loss of water from Mars through time. Geophys Res Lett 35(5). https://doi.org/10.1029/2007GL032721

  • Griffith JD, Wilcox S, Powers DW et al (2008) Discovery of abundant cellulose microfibers encased in 250 Ma Permian halite: a macromolecular target in the search for life on other planets. Astrobiology 8(2):215–228

    Article  Google Scholar 

  • Gross J, Filiberto J, Bell AS (2013) Water in the martian interior: evidence for terrestrial MORB mantle-like volatile contents from hydroxyl-rich apatite in olivine–phyric shergottite NWA 6234. Earth Planet Sci Lett 369–370:120–128

    Article  Google Scholar 

  • Hanley J, Chevrier VF, Berget DJ, Adams RD (2012) Chlorate salts and solutions on Mars. Geophys Res Lett 39(8). https://doi.org/10.1029/2012GL051239

  • Hanley J, Chevrier VF, Barrows RS et al (2015) Near- and mid-infrared reflectance spectra of hydrated oxychlorine salts with implications for Mars. J Geophys Res Planets 120(8):1415–1426

    Article  Google Scholar 

  • Harvey RP, McSween HY (1992) The parent magma of the nakhlite meteorite: clues from melt inclusions. Earth Planet Sci Lett 111(2–4):467–482

    Article  Google Scholar 

  • Hecht MH, Kounaves SP, Quinn RC et al (2009) Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix Lander site. Science 325:64–67. https://doi.org/10.1126/science.1172466

  • Humayun M, Nemchin A, Zanda B et al (2013) Origin and age of the earliest Martian crust from meteorite NWA 7533. Nature 503:513–516

    Article  Google Scholar 

  • Huval JH, Vreeland RH (1991) Taxonomy and halophilic bacteria from underground saline waters and salt formations. In: Rodriguez-Valera F (ed) General and applied aspects of Halophilic bacteria. Plenum, New York, pp 53–60

    Google Scholar 

  • Hynek BM, Osterloo MK, Kierein-Young KS (2015) Late-stage formation of Martian chloride salts through ponding and evaporation. Geology 43(9):787–790

    Article  Google Scholar 

  • Jackson WA, Bohlke JK, Gu BH et al (2010) Isotopic composition and origin of indigenous natural perchlorate and co-occurring nitrate in the southwestern United States. Environ Sci Technol 44(13):4869–4876

    Article  Google Scholar 

  • Jakosky BM, Jones JH (1997) The history of Martian volatiles. Rev Geophys 35:1–16. https://doi.org/10.1029/96RG02903

  • Jakosky BM, Pepin RO, Johnson RE, Fox JL (1994) Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. Icarus 111:271–288. https://doi.org/10.1006/icar.1994.1145

  • Javor B (1989) Hypersaline environments. Springer, New York

    Book  Google Scholar 

  • Jensen HB, Glotch TD (2011) Investigation of the near-infrared spectral character of putative Martian chloride deposits. J Geophys Res 116, E00J03. https://doi.org/10.1029/2011JE003887

  • Johnson MC, Rutherford MJ, Hess PC (1991) Chassigny petrogenesis—melt compositions, intensive parameters, and water contents of martian (questionable) magmas. Geochim Cosmochim Acta 55(1):349–366

    Article  Google Scholar 

  • Kargel JS (2004) Proof of water, hints of life? Nature 436:66–99

    Google Scholar 

  • Karunatillake S, Zhao Y-YS, McLennan SM et al (2013) Does martian soil release reactive halogens to the atmosphere? Icarus 226(2):1438–1446. https://doi.org/10.1016/j.icarus.2013.08.018

  • Keller JM, Boynton WV, Karunatillake S et al (2006) Equatorial and midlatitude distribution of chlorine measured by Mars Odyssey GRS. J Geophys Res 111(E3). https://doi.org/10.1029/2006JE002679

  • Kieffer SW (1979) Thermodynamics and lattice vibrations of minerals: 2. Vibrational characteristics of silicates. Rev Geophys 17:20–34. https://doi.org/10.1029/RG017i001p00020

  • Klingelhöfer G, Morris RV, Bernhardt B et al (2004) Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer. Science 306:1740–1745. https://doi.org/10.1126/science.1104653

  • Knoll AH, Joliff BL, Farrand WH et al (2008) Veneers, rinds, and fracture fills: relatively late alteration of sedimentary rocks at Meridiani Planum, Mars. J Geophys Res 113(E6). https://doi.org/10.1029/2007JE002949

  • Kounaves SP, Hecht MH, Kapit J et al (2010) Wet chemistry experiments on the 2007 Phoenix Mars Scout Lander mission: data analysis and results. J Geophys Res 115(E1). https://doi.org/10.1029/2009JE003424

  • Kounaves SP, Carrier BL, O’Neil GD et al (2014) Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: implications for oxidants and organics. Icarus 229:206–213. https://doi.org/10.1016/j.icarus.2013.11.012

  • Langenauer M, Krähenbühl U (1993) Halogen contamination in Antarctic H5 and H6 chondrites and relation to sites of recovery. Earth Planet Sci Lett 120:431–442

    Article  Google Scholar 

  • Leshin LA (2000) Insights into martian water reservoirs from analyses of martian meteorite QUE94201. Geophys Res Lett 27:2017–2020

    Article  Google Scholar 

  • Leshin LA, Mahaffy PR, Webster CR et al (2013) Volatile, isotope, and organic analysis of martian fines with the Mars Curiosity Rover. Science 341(6153):1238937. https://doi.org/10.1126/science.1238937

  • Lodders K (1998) A survey of shergottite, nakhlite and chassigny meteorites whole-rock compositions. Meteorit Planet Sci 33(S4):A183–A190. https://doi.org/10.1111/j.1945-5100.1998.tb01331.x

  • Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591:1220–1247

    Article  Google Scholar 

  • Longhi J, Knittle E, Wänke H (1992) The bulk composition, mineralogy and internal structure of Mars. In: Kieffer HH, Jakosky BM, Snyder CW, Matthews, MS (ed) Mars. The University of Arizona Press, Tucson, pp 184–208

    Google Scholar 

  • Lowenstein TK, Li J, Brown C et al (1999) 200 ky paleoclimate record from Death Valley salt core. Geology 27:3–6. https://doi.org/10.1130/0091-7613

  • Mangold N, Thompson LM, Forni O et al (2017) Composition of conglomerates analyzed by the Curiosity rover: implications for Gale Crater crust and sediment sources. J Geophys Res 121:353–387. https://doi.org/10.1002/2015JE004977

  • Marion GM, Catling DC, Kargel JS (2009) Br/Cl partitioning in chloride minerals in the Burns formation on Mars. Icarus 200:436–445. https://doi.org/10.1016/j.icarus.2008.12.004

  • Massé M, Bourgeois O, Le Mouélic S et al (2012) Martian polar and circum-polar sulfate-bearing deposits: sublimation tills derived from the North Polar Cap. Icarus 209(2):424–451

    Google Scholar 

  • McAdam AC, Franz HB, Sutter B et al (2014) Sulfur-bearing phases detected by evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars. J Geophys Res Planets 119:373–393. https://doi.org/10.1002/2013JE004518

  • McCubbin FM, Jones RH (2015) Extraterrestrial apatite: planetary geochemistry to astrobiology. Elements 11:183–188

    Article  Google Scholar 

  • McCubbin FM, Nekvasil H (2008) Maskelynite-hosted apatite in the Chassigny meteorite: insights into late-stage magmatic volatile evolution in martian magmas. Am Mineral 93:676–684

    Article  Google Scholar 

  • McCubbin FM, Tosca NJ, Smirnov A et al (2009) Hydrothermal jarosite and hematite in a pyroxene-hosted melt inclusion in martian meteorite Miller Range (MIL) 03346: implications for magmatic-hydrothermal fluids on Mars. Geochim Cosmochim Acta 73:4907–4917

    Article  Google Scholar 

  • McCubbin FM, Smirnov A, Nekvasil H et al (2010) Hydrous magmatism on Mars: a source of water for the surface and subsurface during the Amazonian. Earth Planet Sci Lett 292:132–138

    Article  Google Scholar 

  • McCubbin FM, Hauri EH, Elardo SM et al (2012) Hydrous melting of the martian mantle produced both depleted and enriched shergottites. Geology 40:683–686

    Article  Google Scholar 

  • McCubbin FM, Elardo SM, Shearer CK et al (2013) A petrogenetic model for the co-magmatic origin of chassignites and nakhlites: inferences from chlorine-rich minerals, petrology, and geochemistry. Meteorit Planet Sci 48:819–853

    Article  Google Scholar 

  • McCubbin FM, Vander Kaaden KE, Tartèse R et al (2015) Experimental investigation of F, Cl, and OH partitioning between apatite and Fe-rich basaltic melt at 1.0–1.2 GPa and 950–1000 °C. Am Mineral 100:1790–1802

    Article  Google Scholar 

  • McCubbin FM, Boyce JW, Srinivasan P et al (2016) Heterogeneous distribution of H2O in the martian interior: implications for the abundance of H2O in depleted and enriched mantle sources. Meteorit Planet Sci 51:2036–2060

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McEwen AS, Ojha L, Dundas CM et al (2011) Seasonal flows on warm Martian slopes. Science 333:740–743

    Article  Google Scholar 

  • McEwen AS, Dundas CM, Mattson SS et al (2014) Recurring slope linear in equatorial regions of Mars. Nat Geosci 7:53–58

    Article  Google Scholar 

  • McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2:243–250. https://doi.org/10.1046/j.1462-290.2000.00105.x

  • McSween HY, Harvey RP (1993) Outgassed water on Mars—constraints from melt inclusions in SNC meteorites. Science 259:1890–1892

    Article  Google Scholar 

  • McSween HY, Treiman AH (1998) Martian meteorites. Reviews in Mineralogy and Geochemistry 36:6-1

    Google Scholar 

  • Ming DW, Archer PD Jr, Glavin DP et al (2014) Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale crater. Mars. Science 343(6169):1245267. https://doi.org/10.1126/science.1245267

  • Murchie SL, Mustard JF, Ehlmann BL et al (2009) A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J Geophys Res 114(E2). https://doi.org/10.1029/2008JE003342

  • Muttik N, McCubbin FM, Keller LP et al (2014) Inventory of H2O in the ancient Martian regolith from Northwest Africa 7034: the important role of Fe oxides. Geophys Res Lett 41:8235–8244

    Article  Google Scholar 

  • Navarro-González R, Vargas E, de la Rosa J et al (2010) Reanalysis of the Viking results suggest perchlorate and organics at midlatitudes on Mars. J Geophys Res 115(E12). https://doi.org/10.1029/2010JE003599

  • Newsom HE (1980) Hydrothermal alteration of impact melt sheets with implications for Mars. Icarus 44:207–216

    Article  Google Scholar 

  • Norton CR, Grant WD (1988) Survival of halobacteria within fluids inclusions in salt crystals. J Gen Microbiol 134:1365–1373

    Google Scholar 

  • Norton CF, McGenity TJ, Grant WD (1993) Archaeal halophiles (halobacteria) from two British salt mines. J Gen Microbiol 139:1077–1081

    Article  Google Scholar 

  • Ojha L, McEwan A, Dundas C et al (2014) HiRISE observations of recurring slope lineae (RSL) during southern summer on Mars. Icarus 231:365–376

    Article  Google Scholar 

  • Ojha L, Wilhelm MB, Murchie SL et al (2015) Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat Geosci 8:829–832. https://doi.org/10.1038/Ngeo2546

  • Osterloo MM, Hynek BM (2015) Martian chloride deposits: the last gasps of widespread surface water. Paper presented at the 46th lunar and planetary science conference, The Woodlands, TX, 16–20 March 2015

    Google Scholar 

  • Osterloo MM, Hamilton VE, Bandfield JL et al (2008) Chloride-bearing materials in the southern highlands of Mars. Science 319:1651–1654. https://doi.org/10.1126/science.1150690

  • Osterloo MM, Anderson FS, Hamilton VE, Hynek BM (2010) Geologic context of proposed chloride-bearing materials on Mars. J Geophys Res 115(E10): https://doi.org/10.1029/2010JE003613

  • Quinn RC, Martucci HFH, Miller SR et al (2013) Perchlorate radiolysis on Mars and the origin of Martian soil reactivity. Astrobiology 13(6):515–520. https://doi.org/10.1089/ast.2013.0999

  • Rampe EB, Ming DW, Blake DF et al (2017) Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars. Earth Planet Sci Lett (in press). https://doi.org/10.1016/j.epsl.2017.04.021

  • Rao MN, Bogard DD, Nyquist LE et al (2002) Neutron capture isotopes in the Martian regolith and implications for Martian atmospheric noble gases. Icarus 156:352–372

    Article  Google Scholar 

  • Rao MN, Sutton SR, McKay DS, Dreibus G (2005) Clues to Martian brines based on halogens in salts from nakhlites and MER samples. J Geophys Res 110(E12). https://doi.org/10.1029/2005JE002470

  • Rieder R, Wänke H, Economou T, Turkevich A (1997) Determination of the chemical composition of martian soils and rocks: the alpha proton X ray spectrometer. J Geophys Res 102:4027–4044

    Article  Google Scholar 

  • Rieder R, Gellert R, Brückner J et al (2003) The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers. J Geophys Res 108(E12). https://doi.org/10.1029/2003JE002150

  • Rieder R, Gellert R, Anderson RC et al (2004) Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer. Science 306(5702):1746–1749

    Article  Google Scholar 

  • Righter K, Dyar MD, Delaney JS et al (2002) Correlations of octahedral cations with OH, O2−, Cl, and F in biotite from volcanic rocks and xenoliths. Am Mineral 87:142–153

    Article  Google Scholar 

  • Roedder E (1984) The fluids in salts. Am Mineral 69:413–439

    Google Scholar 

  • Ruesch O, Poulet F, Vincendon M et al (2012) Compositional investigation of the proposed chloride-bearing materials on Mars using near-infrared orbital data from OMEGA/MEx. J Geophys Res 117(E11). https://doi.org/10.1029/2012JE004108

  • Ruff SW, Christensen PR, Barbera PW, Anderson DL (1997) Quantitative thermal emission spectroscopy of minerals: a laboratory technique for measurement and calibration. J Geophys Res 102:14899–14913. https://doi.org/10.1029/97JB00593

  • Rummel JD, Beaty DW, Jones MA et al (2014) A new analysis of Mars “Special Regions”: findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2). Astrobiology 14:887–968

    Article  Google Scholar 

  • Santos AR, Agee CB, McCubbin FM et al (2015) Petrology of igneous clasts in Northwest Africa 7034: implications for the petrologic diversity of the martian crust. Geochim Cosmochim Acta 157:56–85

    Article  Google Scholar 

  • Satterfield CL, Lowenstein TK, Vreeland RH et al (2005) New evidence for 250 Ma age of halotolerant bacterium from a Permian salt crystal. Geology 33(4):265–268. https://doi.org/10.1130/G21106.1

  • Sautter V, Jambon A, Boudouma O (2006) Cl-amphibole in the nakhlite MIL 03346: evidence for sediment contamination in a Martian meteorite. Earth Planet Sci Lett 252:45–55

    Article  Google Scholar 

  • Schubert BA, Lowenstein TK, Timofeeff MN, Parker MA (2009) How do prokaryotes survive in fluids inclusions in halite for 30 k.y.? Geology 37:1059–1062. https://doi.org/10.1130/G30448A.1

  • Schwenzer SP, Kring DA (2009) Impact-generated hydrothermal systems capable of forming phyllosilicates on Noachian Mars. Geology 37:1091–1094

    Article  Google Scholar 

  • Schwenzer SP, Kring DA (2010) Evaluating the effect of sulfur on alteration assemblages in impact cratered terrains on Mars. Paper presented at the 41st lunar and planetary science conference, The Woodlands, TX, 1–5 March 2010

    Google Scholar 

  • Sharp Z, Williams J, Shearer C et al (2016) The chlorine isotope composition of Martian meteorites 2. Implications for the early solar system and the formation of Mars. Meteorit Planet Sci 51(11):2111–2126

    Article  Google Scholar 

  • Simpson WR, Carlson D, Hönninger et al (2007) First-year seas-ice contact predicts bromine monoxide (BrO) levels at Barrow, Alaska better than potential frost flower contact. Atmos Chem Phys 7:4375–4418

    Google Scholar 

  • Smith PN (2006) The ecotoxicology of perchlorate in the environment. In: Gu B, Coates JD (eds) Perchlorate, environmental occurrence, interactions and treatment. Springer, New York, pp 153–168

    Google Scholar 

  • Stein N, Grotzinger JP, Schieber J et al (2017) Candidate desiccation cracks in the upper Murray formation, Gale crater, Mars. Paper presented at the 48th lunar and planetary science conference, The Woodlands, TX, 20–24 March 2017

    Google Scholar 

  • Stern JC, Sutter B, Jackson WA et al (2017) The nitrate/(per)chlorate relationship on Mars. Geophys Res Lett 44(6):2643–2651. https://doi.org/10.1002/2016GL072199

  • Sutter B, Heil E, Morris RV et al (2015) The investigation of perchlorate/iron phase mixtures as a possible source of oxygen detected by the Sample Analysis at Mars (SAM) instrument in Gale Crater, Mars. Paper presented at the 46th lunar and planetary science conference, The Woodlands, TX, 16–20 March 2015

    Google Scholar 

  • Sutter B, McAdam AC, Rampe EB et al (2016) Evolved gas analysis of sedimentary materials in Gale crater, Mars: results from the Curiosity rover’s Sample Analysis at Mars (SAM) instrument from Yellowknife Bay to the Stimson formation. Paper presented at the 47th lunar and planetary science conference, The Woodlands, TX, 21–25 March 1990

    Google Scholar 

  • Sutter B, McAdam AC, Rampe EB et al (2017) Evolved gas analysis of the Murray formation in Gale crater, Mars: results of the Curiosity rover’s Sample Analysis at Mars (SAM) instrument. Paper presented at the 48th lunar and planetary science conference, The Woodlands, TX, 20–24 March 2017

    Google Scholar 

  • Symes SJK, Borg LE, Shearer CK, Irving AJ (2008) The age of the martian meteorite Northwest Africa 1195 and the differentiation history of shergottites. Geochim Cosmochim Acta 72:1696–1710

    Article  Google Scholar 

  • Taylor GJ (2013) The bulk composition of Mars. Chem Erde-Geochem 73(4):401–420

    Article  Google Scholar 

  • Taylor GJ, Boynton WV, McLennan SM, Martel LMV (2010) K and Cl concentrations on the martian surface determined by the Mars Odyssey Gamma Ray Spectrometer: implications for bulk halogen abundances in Mars. Geophys Res Lett 37(12). https://doi.org/10.1029/2010GL043528

  • Thomas NH, Ehlmann BL, Anderson DE et al (2017) ChemCam survey of volatile elements in the Murray formation, Gale crater, Mars. Paper presented at the 48th lunar and planetary science conference, The Woodlands, TX, 20–24 March 2017

    Google Scholar 

  • Thompson LM, Schmidt ME, Gellert R et al (2016) APXS compositional trends along Curiosity’s traverse, Gale crater, Mars: implications for crustal composition, sedimentary provenance, diagenesis and alteration. Paper presented at the 47th lunar and planetary science conference, The Woodlands, TX, 21–25 March 2016

    Google Scholar 

  • Thompson LM, the MSL APXS and Science Teams (2017) Compositional characteristics and trends identified by APXS within the Murray formation, Gale crater, Mars: implications for provenance, diagenesis and alteration. Paper presented at the 48th lunar and planetary science conference, The Woodlands, TX, 20–24 March 2017

    Google Scholar 

  • Treiman AH (1986) The parental magma of the Nakhla achondrite: ultrabasic volcanism on the shergottite parent body. Geochim Cosmochim Acta 50(6):1061–1070

    Article  Google Scholar 

  • Treiman AH (1990) Complex petrogenesis of the Nakhla (SNC) meteorite: evidence from petrography and mineral chemistry. Paper presented at the 20th lunar and planetary science conference, Houston, TX, 13–17 March 1990

    Google Scholar 

  • Treiman AH (1993) The parent magma of the Nakhla (SNC) meteorite, inferred from magmatic intrusions. Geochim Cosmochim Acta 57(19):4753–4767

    Article  Google Scholar 

  • Treiman AH (2005) The nakhlite meteorites: augite-rich igneous rocks from Mars. Chem Erde-Geochem 65(3):203–270

    Article  Google Scholar 

  • Treiman AH, Lindstrom DJ (1997) Trace element geochemistry of Martian iddingsite in the Lafayette meteorite. J Geophys Res 102:9153–9161

    Article  Google Scholar 

  • Vaniman DT, Bish DL, Ming DW et al (2014) Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars. Science 343(6169):1243480. https://doi.org/10.1126/science.1243480

  • Vaniman DT, Martínez GM, Rampe EB et al (2017) Calcium sulfates at Gale crater and limitations on gypsum stability. Paper presented at the 48th lunar and planetary science conference, The Woodlands, TX, 20–24 March 2017

    Google Scholar 

  • Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary sat crystal. Nature 407:897–900. https://doi.org/10.1028/35038060

  • Watson LL, Hutcheon ID, Epstein S, Stolper EM (1994) Water on Mars: clues from deuterium/hydrogen and water contents of hydrous phases in SNC meteorites. Science 265:86–90

    Article  Google Scholar 

  • Webster J, Baker DR, Aiuppa A (2018) Halogens in mafic and intermediate-silica content magmas. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 307–430

    Google Scholar 

  • Williams JT, Shearer CK, Sharp ZD et al (2016) The chlorine isotopic composition of Martian meteorites 1: chlorine isotope composition of Martian mantle and crustal reservoirs and their interactions. Meteorit Planet Sci 51(11):2092–2110

    Article  Google Scholar 

  • Wilson EH, Atreya SK, Kaiser RI, Mahaffy PR (2016) Perchlorate formation on Mars through surface radiolysis-initiated atmospheric chemistry: a potential mechanism. J Geophys Res Planets 121:1472–1487. https://doi.org/10.1002/2016JE005078

  • Wood WW, Sanford WE (2007) Atmospheric bromine flux from the coastal Abu Dhabi sabkhat: a ground-water mass-balance investigation. Geophys Res Lett 34(14). https://doi.org/10.1029/GL029922

  • Wu Z, Wang A, Li Z et al (2015) Identification and detection limits of perchlorate-chlorate in mixtures by vibrational spectroscopy. Paper presented at the 46th lunar and planetary science conference, The Woodlands, TX, 16–20 March 2015

    Google Scholar 

  • Yen AS, Gellert R, Schröder C et al (2005) An integrated view of the chemistry and mineralogy of martian soils. Nature 436:49–54. https://doi.org/10.1038/nature03637

  • Zhao Y-YS, McLennan SM, Schoonon MAA (2014) Behavior of Br, Cl, and phosphate during low-temperature aqueous Fe(II) oxidation processes on Mars. J Geophys Res Planets 119:998–1012. https://doi.org/10.1002/2013JE004417

  • Zipfel J, Scherer P, Spettel B et al (2000) Petrology and chemistry of the new shergottite Dar al Gani 476. Meteorit Planet Sci 35:95–106. https://doi.org/10.1111/j.1945-5100.2000.tb01977.x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth B. Rampe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rampe, E.B., Cartwright, J.A., McCubbin, F.M., Osterloo, M.M. (2018). The Role of Halogens During Fluid and Magmatic Processes on Mars. In: Harlov, D., Aranovich, L. (eds) The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Springer Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-61667-4_16

Download citation

Publish with us

Policies and ethics