Evolution of Molecular Investigations on Sturgeon Sex Determination and Most Recent Developments in DNA Methylation with a Focus on the Siberian Sturgeon

  • Rémy Simide
  • Sandrine Gaillard


Sturgeon aquaculture is largely based around females due to caviar production. In the absence of sexual dimorphism and differentiated gonads in juveniles, the gender sorting of sturgeon is carried out at about 2–3 years old depending on rearing conditions, which increases farming costs. Identification of a molecular sex determination mechanism or of a molecular sex marker could lead to earlier sex identification. For decades scientists have developed different methods and approaches to identify a way in which sturgeon can be sexed. In this chapter we gather together the different approaches employed: heterogametic sex chromosome identification, random identification of molecular polymorphisms, transcriptome sequencing, and targeting sequences of interest. We have included our own results from juvenile and adult Siberian sturgeon on the inter simple sequence repeat (ISSR) with the support of hierarchical cluster analysis and on the expression of genes known to be involved in sex differentiation, Foxl2, So9, Igf1, and Fgf9. To date, no sex marker has been identified following these methods. We also present the advantages of DNA methylation to assess gene expression regulation, which opens up new perspectives in sex determination and differentiation research in fish. The first investigation of DNA methylation of DMRT1 using MS-HRM technology in sturgeon will conclude this chapter.


Fish Acipenser baerii Sexing DNA methylation MS-HRM (Methylation sensitive-high resolution melting) 



We thank the Ecloserie de Guyenne, the Prunier Manufacture Company, and the Sources du Gapeau for generously providing sturgeon and O. Brunel and P. Benoit from the Sturgeon SCEA Company for their help. We also thank the Sturgeon SCEA Company and the region PACA who funded this study; L. Jaffrelot, E. Macarry, R. Ciarlo, and M. Lechable for the help with laboratory analyses; and A. Smith for the English corrections.


  1. Amberg JJ, Goforth R, Stefanavage T, Sepúlveda MS (2010) Sexually dimorphic gene expression in the gonad and liver of shovelnose sturgeon (Scaphirhynchus platorynchus). Fish Physiol Biochem 36:923–932CrossRefPubMedGoogle Scholar
  2. Amberg JJ, Goforth RR, Sepúlveda MS (2013) Antagonists to the Wnt Cascade Exhibit Sex-Specific Expression in Gonads of Sexually Mature Shovelnose Sturgeon. Sex Dev 7:308–315CrossRefPubMedGoogle Scholar
  3. Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman TL, Hahn MW, Kitano J, Mayrose I, Ming R, Perrin N, Ross L, Valenzuela N, Vamosi JC (2014) The Tree of Sex Consortium. Sex Determination: Why So Many Ways of Doing It? PLoS Biol 12:e1001899. doi: 10.1371/journal.pbio.1001899 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Berbejillo J, Martinez-Bengochea A, Bedó G, Vizziano-Cantonnet D (2011) Molecular Characterization of Testis Differentiation in the Siberian Sturgeon, Acipenser baerii. Indian J Sci Technol 4:71–72Google Scholar
  5. Berbejillo J, Martinez-Bengochea A, Bedo G, Brunet F, Volff JN, Vizziano-Cantonnet D (2012) Expression and phylogeny of candidate genes for sex differentiation in a primitive fish species, the Siberian sturgeon, Acipenser baerii. Mol Reprod Dev 79:504–516CrossRefPubMedGoogle Scholar
  6. Berbejillo J, Martinez-Bengochea A, Bedó G, Vizziano-Cantonnet D (2013) Expression of dmrt1 and sox9 during gonadal development in the Siberian sturgeon (Acipenser baerii). Fish Physiol Biochem 39:91–94CrossRefPubMedGoogle Scholar
  7. Brennan J, Capel B (2004) One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet 5:509–521CrossRefPubMedGoogle Scholar
  8. Bronzi P, Rosenthal H (2014) Present and future sturgeon and caviar production and marketing: a global market overview. J Appl Ichthyol 30:1536–1546CrossRefGoogle Scholar
  9. Ceapa C, Williot P, Le Menn F, Davail-Cuisset B (2002) Plasma sex steroids and vitellogenin levels in stellate sturgeon (Acipenser stellatus Pallas) during spawning migration in the Danube River. J Appl Ichthyol 18:391–396CrossRefGoogle Scholar
  10. Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304CrossRefPubMedGoogle Scholar
  11. Chebanov M, Galich E (2009) Ultarsound diagnostics for sturgeon broodstock management. South Branch Federal Center of Selection and Genetics for Aquaculture, Krasnodar, Russian Federation, 116Google Scholar
  12. Contractor RG, Foran CM, Li S, Willett KL (2004) Evidence of gender-and tissue-specific promoter methylation and the potential for ethinylestradiol-induced changes in Japanese medaka (Oryzias latipes) estrogen receptor and aromatase genes. J Toxicol Environm Health A 67(1):1–22CrossRefGoogle Scholar
  13. Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364CrossRefGoogle Scholar
  14. Ezaz MT, Harvey SC, Boonphakdee C, Teale AJ, McAndrew BJ, Penman DJ (2004) Isolation and physical mapping of sex-linked AFLP markers in Nile tilapia (Oreochromis niloticus L.) Mar Biotechnol 6:435–445CrossRefPubMedGoogle Scholar
  15. Felip A, Young WP, Wheeler PA, Thorgaard GH (2005) An AFLP-based approach for the identification of sex-linked markers in rainbow trout (Oncorhynchus mykiss). Aquaculture 247:35–43CrossRefGoogle Scholar
  16. Ferreiro C, Medrano JF, Gall GA (1989) Genome analysis of rainbow trout and sturgeon with restriction enzymes and hybridization with a ZFY gene derived probe to identify sex. Aquaculture 81:245–251CrossRefGoogle Scholar
  17. Fontana F, Colombo G (1974) The chromosomes of Italian sturgeons. Experientia 30:739–742CrossRefPubMedGoogle Scholar
  18. Fontana F, Rossi R, Lanfredi M, Arlati G, Bronzi P (1997) Cytogenetic characterization of cell lines from three sturgeon species. Caryologia 50(1):91–95CrossRefGoogle Scholar
  19. Fontana F, Congiu L, Mudrak VA, Quattro JM, Smith TIJ, Ware K, Doroshov SI (2008) Evidence of hexaploid karyotype in shortnose sturgeon. Genome 51:113–119CrossRefPubMedGoogle Scholar
  20. Fopp-Bayat D (2010) Meiotic gynogenesis revealed not homogametic female sex determination system in Siberian sturgeon (Acipenser baeri Brandt). Aquaculture 305:174–177CrossRefGoogle Scholar
  21. Gaillard S (2006) Détermination et différentiation sexuelles chez les poissons “le sexe des esturgeons.” PhD thesis. University of ToulonGoogle Scholar
  22. Graves JAM (2014) The epigenetic sole of sex and dosage compensation. Nature Genetics 46(3):215–217Google Scholar
  23. Griffiths R, Orr KL, Adam A, Barber I (2000) DNA sex identification in the three-spined stickleback. J Fish Biol 57:1331–1334CrossRefGoogle Scholar
  24. Hagihara S, Yamashita R, Yamamoto S, Ishihara M, Abe T, Ijiri S, Adachi S (2014) Identification of genes involved in gonadal sex differentiation and the dimorphic expression pattern in undifferentiated gonads of Russian sturgeon Acipenser gueldenstaedtii Brandt & Ratzeburg, 1833. J Appl Ichthyol 30:1557–1564CrossRefGoogle Scholar
  25. Hale M, McCormick C, Jackson J, DeWoody JA (2009) Next-generation pyrosequencing of gonad transcriptomes in the polyploid lake sturgeon (Acipenser fulvescens): the relative merits of normalization and rarefaction in gene discovery. BMC Genomics 10:203CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hale MC, Jackson JR, DeWoody JA (2010) Discovery and evaluation of candidate sex-determining genes and xenobiotics in the gonads of lake sturgeon (Acipenser fulvescens). Genetica 138:745–756CrossRefPubMedGoogle Scholar
  27. Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK, Sakamoto T, Fernandino JI, Somoza GM, Yokota M, Strüssmann CA (2012) A Y-linked anti-Müllerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci 109:2955–2959CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hattori RS, Strüssmann CA, Fernandino JI, Somoza GM (2013) Genotypic sex determination in teleosts: Insights from the testis-determining amhy gene. Gen Comp Endocrinol 192:55–59CrossRefPubMedGoogle Scholar
  29. Havelka M, Kaspar V, Hulak M, Flajshans M (2011) Sturgeon genetics and cytogenetics: a review related to ploidy levels and interspecific hybridization. Folia Zool 60:93–103CrossRefGoogle Scholar
  30. Hett AK, Ludwig A (2005) SRY-related (Sox) genes in the genome of European Atlantic sturgeon (Acipenser sturio). Genome 48:181–186CrossRefPubMedGoogle Scholar
  31. Hett AK, Pitra C, Jenneckens I, Ludwig A (2005) Characterization of sox9 in European Atlantic sturgeon (Acipenser sturio). J Hered 96:150–154CrossRefPubMedGoogle Scholar
  32. Howe K, Clark MD, Torroja CF, Torrance J et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, Fujita M, Suetake H, Suzuki S, Hosoya S, Tohari S, Brenner S, Miyadai T, Venkatesh B, Suzuki Y, Kikuchi K (2012) A Trans-Species Missense SNP in Amhr2 Is Associated with Sex Determination in the Tiger Pufferfish, Takifugu rubripes (Fugu). PLoS Genet 8:e1002798CrossRefPubMedPubMedCentralGoogle Scholar
  34. Keyvanshokooh S, Kalbassi MR, Hosseinkhani S, Vaziri B (2009) Comparative proteomics analysis of male and female Persian sturgeon (Acipenser persicus) gonads. Anim Reprod Sci 111:361–368CrossRefPubMedGoogle Scholar
  35. Keyvanshokooh S, Gharaei A (2010) A review of sex determination and searches for sex-specific markers in sturgeon. Aquac Res 41:e1–e7CrossRefGoogle Scholar
  36. Khodaparast M, Keyvanshokooh S, Pourkazemi M, Hosseini SJ, Zolgharnein H (2014) Searching the genome of beluga (Huso huso) for sex markers based on targeted Bulked Segregant Analysis (BSA). CJES 12:185–195Google Scholar
  37. Kobayashi Y, Nagahama Y, Nakamura M (2013) Diversity and plasticity of sex determination and differentiation in fishes. Sex Dev 7:115–125CrossRefPubMedGoogle Scholar
  38. Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3:253–266CrossRefPubMedGoogle Scholar
  39. Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11:191–203CrossRefPubMedGoogle Scholar
  40. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220CrossRefPubMedPubMedCentralGoogle Scholar
  41. Li Y, Chia JM, Bartfai R, Christoffels A, Yue GH, Ding K, Ho MY, Hill JA, Stupka E, Orban L (2004) Comparative analysis of the testis and ovary transcriptomes in zebrafish by combining experimental and computational tools. Comp Funct Genomics 5:403–418CrossRefPubMedPubMedCentralGoogle Scholar
  42. Liew WC, Bartfai R, Lim Z, Sreenivasan R, Siegfried KR, Orban L (2012) Polygenic Sex Determination System in Zebrafish. PLoS One 7(4):e34397CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322CrossRefPubMedPubMedCentralGoogle Scholar
  44. Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N et al (2002) DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417:559–563CrossRefPubMedGoogle Scholar
  45. McCormick CR, Bos DH, DeWoody JA (2008) Multiple molecular approaches yield no evidence for sex-determining genes in lake sturgeon (Acipenser fulvescens). J Appl Ichthyol 24:643–645Google Scholar
  46. Myosho T, Otake H, Masuyama H, Matsuda M, Kuroki Y, Fujiyama A, Naruse K, Hamaguchi S, Sakaizumi M (2012) Tracing the Emergence of a Novel Sex-Determining Gene in Medaka, Oryzias luzonensis. Genetics 191:163–170CrossRefPubMedPubMedCentralGoogle Scholar
  47. Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C, Shimizu A, Shan Z, Haaf T, Shimizu N, Shima A, Schmid M, Schartl M (2002) A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc Natl Acad Sci 99:11778–11783CrossRefPubMedPubMedCentralGoogle Scholar
  48. Navarro-Martín L, Viñas J, Ribas L, Díaz N, Gutiérrez A, Di Croce L, Piferrer F (2011) DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genet 7:e1002447CrossRefPubMedPubMedCentralGoogle Scholar
  49. Penman DJ, Piferrer F (2008) Fish gonadogenesis. Part I: genetic and environmental mechanisms of sex determination. Rev Fish Sci 16:16–34CrossRefGoogle Scholar
  50. Pierron F, Bureau du Colombier S, Moffett A, Caron A, Peluhet L, Daffe G, Lambert P, Elie P, Labadie P, Budzinski H, Dufour S, Couture P, Baudrimont M (2014) Abnormal Ovarian DNA Methylation Programming during Gonad Maturation in Wild Contaminated Fish. Environ Sci Technol 48:11688–11695CrossRefPubMedGoogle Scholar
  51. Piferrer F, Guiguen Y (2008) Fish gonadogenesis. Part II: molecular biology and genomics of sex differentiation. Rev Fish Sci 16:35–55CrossRefGoogle Scholar
  52. Piferrer F, Ribas L, Díaz N (2012) Genomic approaches to study genetic and environmental influences on fish sex determination and differentiation. Mar Biotechnol 14:591–604CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rens W, Grützner F, O'Brien PC, Fairclough H, Graves JA, Ferguson-Smith MA (2004) Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution. Proc Natl Acad Sci U S A 101(46):16257–16261CrossRefPubMedPubMedCentralGoogle Scholar
  54. Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 103:1412–1417CrossRefPubMedPubMedCentralGoogle Scholar
  55. Schultheis C, Böhne A, Schartl M, Volff JN, Galiana-Arnoux D (2009) Sex determination diversity and sex chromosome evolution in poeciliid fish. Sex Dev 3:68–77CrossRefPubMedGoogle Scholar
  56. Shao C, Li Q, Chen S, Zhang P, Lian J, Hu Q, Sun B, Jin L, Liu S, Wang Z et al (2014) Epigenetic modification and inheritance in sexual reversal of fish. Genome Res 24:604–615CrossRefPubMedPubMedCentralGoogle Scholar
  57. Si Y, Ding Y, He F, Wen H, Li J, Zhao J, Huang Z (2015) DNA methylation level of cyp19a1a and Foxl2 gene related to their expression patterns and reproduction traits during ovary development stages of Japanese flounder (Paralichthys olivaceus). Gene 575:321–330CrossRefPubMedGoogle Scholar
  58. Takehana Y, Matsuda M, Myosho T, Suster ML, Kawakami K, Shin T, Kohara Y et al (2014) Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena. Nat Com 5:4157Google Scholar
  59. Vale L, Dieguez R, Sánchez L, Martínez P, Viñas A (2014) A sex-associated sequence identified by RAPD screening in gynogenetic individuals of turbot (Scophthalmus maximus). Mol Biol Rep 41:1501–1509CrossRefPubMedGoogle Scholar
  60. Van Eenennaam V (1997) Genetic Analysis of the Sex Determination Mechanism of White Sturgeon (Acipenser transmontamus Richardson). Chapter 3: Experimental approaches Used in an Attempt to isolate molecular genetic marker for the identification of sexe on white sturgeon—PhD thesis. University of California, DavisGoogle Scholar
  61. Vidotto M, Grapputo A, Boscari E, Barbisan F, Coppe A, Grandi G, Kumar A, Congiu L (2013) Transcriptome sequencing and de novo annotation of the critically endangered Adriatic sturgeon. BMC Genomics 14:407CrossRefPubMedPubMedCentralGoogle Scholar
  62. Vizziano-Cantonnet D, Di Landro S, Lasalle A, Martínez A, Mazzoni T, Quagio-Grassiotto I (2016) Identification of the molecular sex-differentiation period in the Siberian sturgeon. Mol Reprod Dev 83:19–36CrossRefPubMedGoogle Scholar
  63. Webb MAH, Doroshov SI (2011) Importance of environmental endocrinology in fisheries management and aquaculture of sturgeons. Gen Compar Endocrinol 170:313–321CrossRefGoogle Scholar
  64. Webb M, Van Eenennaam J, Chapman FA, Vasquez D, Hammond G (2013) Techniques to determine sex and stage of maturity in sturgeons and paddlefish: a brief overview. In: workshop of the 7th international symposium on sturgeons, Nanaimo, BC, Canada, 21–25 July 2013Google Scholar
  65. Wen AY, You F, Sun P, Li J, Xu DD, Wu ZH, Ma DY, Zhang PJ (2014) CpG methylation of dmrt1 and cyp19a promoters in relation to their sexual dimorphic expression in the Japanese flounder Paralichthys olivaceus. J Fish Biol 84:193–205CrossRefPubMedGoogle Scholar
  66. Wetzel DL, Reynolds JE (2013) Advances in application of LP9 analyses for determination of sex in young sturgeon. In: poster presentation at the 7th international symposium on sturgeons, Nanaimo, BC, Canada, 21–25 July 2013Google Scholar
  67. Wetzel DL, Reynolds JE, Roudebush WE (2013) Fish sexual characteristic determination using peptide hormones. Published patent, EP2646833 A2
  68. Williot P, Sabeau L (1999) Elevage d’esturgeons et production de caviar: exemple de l’esturgeon sibérien (Acipenser baeri) en France. CR Acad Agric 85(8):71–83Google Scholar
  69. Williot P, Sabeau L, Gessner J, Arlati G, Bronzi P, Gulyas T, Berni P (2001) Sturgeon farming in Western Europe: recent developments and perspectives. Aquat Living Ressour 14:367–374CrossRefGoogle Scholar
  70. Williot P (2002) Reproduction des esturgeons. In: Billard R (ed) Esturgeons et caviar. Tech et Doc, Lavoisier, pp 63–90Google Scholar
  71. Wojdacz TK, Dobrovic A, Hansen LL (2008) Methylation-sensitive high-resolution melting. Nat Protoc 3:1903–1908CrossRefPubMedGoogle Scholar
  72. Wuertz S, Gaillard S, Barbisan F, Carle S, Congiu L, Forlani A, Aubert J, Kirschbaum F, Tosi E, Zane L et al (2006) Extensive screening of sturgeon genomes by random screening techniques revealed no sex-specific marker. Aquaculture 258:685–688CrossRefGoogle Scholar
  73. Xiao TQ, Lu CY, Li C, Cheng L, Cao DC, Sun XW (2014) An AFLP-based approach for the identification of sex-linked markers in Amur sturgeon Acipenser schrenckii Brandt, 1869. J Appl Ichthyol 30:1282–1285CrossRefGoogle Scholar
  74. Yano A, Nicol B, Jouanno E, Quillet E, Fostier A, Guyomard R, Guiguen Y (2012) The sexually dimorphic on the Y-chromosome gene (sdY) is a conserved male-specific Y-chromosome sequence in many salmonids. Evol Appl 6:486–496CrossRefPubMedPubMedCentralGoogle Scholar
  75. Yarmohammadi M, Pourkazemi M, Chakmehdouz F, Kazemi R (2011a) Comparative study of male and female gonads in Persian sturgeon (Acipenser persicus) employing DNA-AFLP and CDNA-AFLP analysis. J Appl Ichthyol 27:510–513CrossRefGoogle Scholar
  76. Yarmohammadi M, Pourkazemi M, Ghasemi A, Hassanzadeh M, Chakmehdouz F (2011b) AFLP reveals no sex-specific markers in Persian sturgeon (Acipenser persicus) or beluga sturgeon (Huso huso) from the southern Caspian Sea, Iran. Prog Biol Sci 1:55–114Google Scholar
  77. Yue H, Li C, Du H, Zhang S, Wei Q (2015) Sequencing and De Novo Assembly of the Gonadal Transcriptome of the Endangered Chinese Sturgeon (Acipenser sinensis). PLoS One 10:e0127332CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zhang Y, Zhang S, Liu Z, Zhang L, Zhang W (2013) Epigenetic Modifications During Sex Change Repress Gonadotropin Stimulation of Cyp19a1a in a Teleost Ricefield Eel (Monopterus albus). Endocrinology 154:2881–2890CrossRefPubMedGoogle Scholar
  79. Zhao D, McBride D, Nandi S, McQueen HA, McGrew MJ, Hocking PM, Lewis PD, Sang HM, Clinton M (2010) Somatic sex identity is cell autonomous in the chicken. Nature 464:237–242CrossRefPubMedPubMedCentralGoogle Scholar
  80. Zhou H, Fujimoto T, Adachi S, Yamaha E, Arai K (2011) Genome size variation estimated by flow cytometry in Acipenser mikadoi, Huso dauricus in relation to other species of Acipenseriformes. J Appl Ichthyol 27:484–491CrossRefGoogle Scholar
  81. Zhou H, Fujimoto T, Adachi S, Abe S, Yamaha E, Arai K (2013) Molecular cytogenetic study on the ploidy status in Acipenser mikadoi. J Appl Ichthyol 29:51–55CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire Protee, Equipe de Biologie Moléculaire MarineUniversité de Toulon. Campus de la GardeToulon Cedex 9France
  2. 2.Institut océanographique Paul Ricard. Ile des EmbiezSix Fours Les PlagesFrance
  3. 3.Laboratoire Protee, Plateforme BioTechServicesUniversité de Toulon. Campus de la GardeToulon Cedex 9France

Personalised recommendations