The Axial Skeleton of the Siberian Sturgeon. Development, Organization, Structure and New Insights on Mineralization and Ossification of Vertebral Elements

  • Jean-Yves Sire
  • Amandine Leprévost


Accurate data on axial skeleton development, structure and mineralization in Acipenseriformes are required not only to improve our knowledge on this functional region but also to know whether or not such information can help in understanding anomalies of the vertebral column in reared sturgeons. Recent data obtained using growth series of Acipenser baerii and various techniques such as X-ray microtomography, histological and ultrastructural descriptions, and solid-state NMR analyses have completed previous, fragmented information in Acipenseriformes, notably with regard to ossification and mineralization of the vertebrae. The axial skeleton is mostly cartilaginous, and each vertebra is composed of several elements organized around a persistent and unconstricted notochord. Typical perichondral bone is lately deposited around these elements during ontogeny and mineralizes. No resorption process of these mineralized structures was so far observed. A new mineralized tissue of unknown origin and function was discovered within the notochord. The nature of the mineral phase of all these structures is typical as they are mainly composed of amorphous calcium phosphate that progressively changes into hydroxyapatite. The few mineralized content of the vertebrae does not allow to explain the origin of the anomalies affecting the axial skeleton in farmed specimens. Future studies aiming to understand these pathologies should focus on (a) the mineral metabolism in order to identify variations of physiological markers with regard to environmental factors and (b) the structure and growth of the typical cartilage that constitutes the main component of the axial skeleton.


Acipenseriformes Siberian sturgeon Axial skeleton Vertebrae Structure Development Mineralization Cartilage Anomalies Fish farming 



We thank Patrick Williot (Sturgeon Consultant, Audenge, France) and his colleagues (M. Chebanov and G. Nonnotte) who offer us the opportunity to write this review.


  1. Arratia G, Schultze HP, Casciotta J (2001) Vertebral column and associated elements in dipnoans and comparison with other fishes: development and homology. J Morphol 250:101–172CrossRefPubMedGoogle Scholar
  2. Athanassopoulou F, Billinis C, Prapas T (2004) Important disease conditions of newly cultured species in intensive freshwater farms in Greece: first incidence of nodavirus infection in Acipenser sp. Dis Aquat Org 60:247–252CrossRefPubMedGoogle Scholar
  3. Bemis WE, Findeis EK, Grande L (1997) An overview of Acipenseriformes. Environ Biol Fish 48:25–71CrossRefGoogle Scholar
  4. Birstein VJ (1993) Sturgeons and paddlefishes: threatened fishes in need of conservation. Conserv Biol 7:773–787CrossRefGoogle Scholar
  5. Boglione C, Gavaia P, Koumoundouros G et al (2013a) Skeletal anomalies in reared European fish larvae and juveniles. Part 1: normal and anomalous skeletogenic processes. Rev Aquacult 5:S99–S120CrossRefGoogle Scholar
  6. Boglione C, Gisbert E, Gavaia P et al (2013b) Skeletal anomalies in reared European fish larvae and juveniles. Part 2: main typologies, occurrences and causative factors. Rev Aquacult 5:S121–S167CrossRefGoogle Scholar
  7. Brun R, Nougayrede P, Chene P et al (1991) Bilan sanitaire de 2 ans d’élevage d’Acipenser baeri en piscicultures intensives. In: Williot P (ed) Acipenser. CEMAGREF Publ., France, pp 429–437Google Scholar
  8. Cahu C, Zambonino Infante JL, Takeuchi T (2003) Nutritional components affecting skeletal development in fish larvae. Aquaculture 227:245–258CrossRefGoogle Scholar
  9. Chernyshov VI, Isuev AP (1980) Etiology of the free-radical pathology in the sturgeons Acipenser gueldenstaedtii (Brandt), Acipenser stellatus (Pallas) and Huso huso (L.) during embryogenesis. Vopr Ikhtiol 20:334–344Google Scholar
  10. Deschamps MH (2008) Etude histomorphométrique du squelette axial de la truite arc-en-ciel d’élevage, Oncorhynchus mykiss. PhD thesis, Université Pierre & Marie Curie, Paris, p 156. []
  11. Deschamps MH, Girondot M, Labbé L et al (2009a) Changes in vertebral structure during growth of reared rainbow trout, Oncorhynchus mykiss (Walbaum): a new approach using modelling of vertebral bone profiles. J Fish Dis 32:233–246CrossRefPubMedGoogle Scholar
  12. Deschamps MH, Labbé L, Baloche S et al (2009b) Sustained exercise improves vertebral histomorphometry and modulates hormonal levels in rainbow trout. Aquaculture 296:337–346CrossRefGoogle Scholar
  13. Deschamps MH, Kacem A, Ventura R et al (2008) Assessment of “discreet” vertebral abnormalities, bone mineralization and bone compactness in farmed rainbow trout. Aquaculture 279:11–17CrossRefGoogle Scholar
  14. Dettlaff TA, Ginsburg AS, Schmalhausen OI (1993) Sturgeon fishes. Developmental biology and aquaculture. Springer-Verlag, Berlin, p 300CrossRefGoogle Scholar
  15. FAO (2013) Cultured aquatic species fact sheets, Acipenser baerii (Brandt, 1896). FAO Fisheries & Aquaculture DepartmentGoogle Scholar
  16. Findeis EK (1997) Osteology and phylogenetic interrelationships of sturgeons (Acipenseridae). Environ Biol Fish 48:73–126CrossRefGoogle Scholar
  17. Fontagné S, Bazin D, Breque J et al (2006) Effects of dietary oxidized lipid and vitamin a on the early development and antioxidant status of Siberian sturgeon (Acipenser baeri) larvae. Aquaculture 257:400–411CrossRefGoogle Scholar
  18. Gadow H, Abbott EC (1895) On the evolution of the vertebral column of fishes. Phil Trans R Soc Lond 186:163–221CrossRefGoogle Scholar
  19. Gisbert E (1999) Early development and allometric growth patterns in Siberian sturgeon and their ecological significance. J Fish Biol 54:852–862CrossRefGoogle Scholar
  20. Gisbert E, Williot P, Castello-Orvay F (1998) Morphological development of Siberian sturgeon (Acipenser baeri, Brandt) during prelarval and larval stages. Riv Ital Acquacolt 33:121–130Google Scholar
  21. Grande L, Bemis WE (1991) Osteology and phylogenetic relationships of fossil and recent paddlefishes (Polyodontidae) with comments on the interrelationships of Acipenseriformes. J Vert Paleontol 11:1–121CrossRefGoogle Scholar
  22. Gurtovoy NN, Matveev BS, Dzerjinskiy FY (1976) Practical zootomy of vertebrates. Moscow, Vysshya Shkola. (in Russian)Google Scholar
  23. Hilton EJ, Grande L, Bemis WE (2011) Skeletal anatomy of the shortnose sturgeon, Acipenser brevirostrum Lesueur, 1818, and the systematics of sturgeons (Acipenseriformes, Acipenseridae). Field Life Earth Sci 3:1–168CrossRefGoogle Scholar
  24. Hou JL, Zhuang P, Zhang LZ et al (2011) Morphological deformities and recovery, accumulation and elimination of lead in body tissues of Chinese sturgeon, Acipenser sinensis, early life stages: a laboratory study. J Appl Ichtyol 27:514–519CrossRefGoogle Scholar
  25. Hu J, Zhang Z, Wei Q et al (2009) Malformations of the endangered Chinese sturgeon, Acipenser sinensis, and its causal agent. Proc Natl Acad Sci (23):9339–9344Google Scholar
  26. Lall SP, Lewis-Mc Crea LM (2007) Role of nutrients in skeletal metabolism and pathology in fish - an overview. Aquaculture 267:3–19CrossRefGoogle Scholar
  27. Leprévost A, Azais T, Trichet M et al (2017a) Vertebral development and ossification in the Siberian sturgeon (Acipenser baerii), with new insights on bone histology and ultrastructure in vertebral elements and in scutes. Anat Rec 300:437–449CrossRefGoogle Scholar
  28. Leprévost A, Azais T, Trichet M et al (2017b) Identification of a new mineralized tissue in the notochord of reared Siberian sturgeon (Acipenser baerii). J Morphol (in press)Google Scholar
  29. Liem K, Bemis W, Walker WF et al (2001) Chapter 8: The postcranial skeleton: the axial skeleton. In: Lewis T (ed) Functional anatomy of the vertebrates. An evolutionary perspective. Emily Barrosse, New YorkGoogle Scholar
  30. Linares-Casenave J, Werner I, Eenennaam JPV et al (2013) Temperature stress induces notochord abnormalities and heat shock proteins expression in larval green sturgeon (Acipenser medirostris Ayres, 1854). J Appl Ichtyol 29:958–967CrossRefGoogle Scholar
  31. Long JH (1995) Morphology, mechanics, and locomotion: the relation between the notochord and swimming motions in sturgeon. Environ Biol Fish 44:199–211CrossRefGoogle Scholar
  32. Meunier FJ, Herbin M (2014) La collection de préparations histologiques effectuées par Paul Gervais (1816-1879) sur le squelette des “poissons”. Cybium 38(1):23–42Google Scholar
  33. Meunier FJ, Ramzu MY (2006) La régionalisation morphofonctionnelle de l’axe vertébral chez les téléostéens en relation avec le mode de nage. C R Palevol 5:499–507CrossRefGoogle Scholar
  34. Schmitz RJ (1998) Comparative ultrastructure of the cellular components of the unconstricted notochord in the sturgeon and the lungfish. J Morphol 236:75–104CrossRefGoogle Scholar
  35. Wang Y, Von Euw S, Fernandes FM et al (2013) Water-mediated structuring of bone apatite. Nat Mater 12:1144–1153CrossRefPubMedGoogle Scholar
  36. Williot P (2009) L’élevage de l’esturgeon sibérien (Acipenser baerii Brandt) en France. Cah Agric 18:189–194Google Scholar
  37. Williot P, Rouault T (1982) Compte rendu d’une première reproduction en France de l’esturgeon sibérien Acipenser baerii. Bull Fr Pisc 286:255–261CrossRefGoogle Scholar
  38. Williot P, Rochard E, Castelnaud G et al (1997) Biological characteristics of European Atlantic sturgeon, Acipenser sturio, as the basis for a restoration program in France. Environ Biol Fish 48:359–370CrossRefGoogle Scholar
  39. Williot P, Rochard E, Desse-Berset N et al (2011) Brief introduction to sturgeon with a special focus on the European sturgeon, Acipenser sturio L., 1758. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  40. Williot P, Sabeau L, Gessner J et al (2001) Sturgeon farming in Western Europe: recent developments and perspectives. Aquat Living Resour 14:367–374CrossRefGoogle Scholar
  41. Zhang X, Shimoda K, Ura K et al (2012) Developmental structure of the vertebral column, fins, scutes and scales in bester sturgeon, a hybrid of beluga Huso huso and sterlet Acipenser ruthenus. J Fish Biol 81:1985–2004CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, Institut de Biologie Paris Seine, UMR 7138-Evolution Paris Seine, Equipe “Evolution et Développement du Squelette”ParisFrance

Personalised recommendations