An Updated Version of Histological and Ultrastructural Studies of Oogenesis in the Siberian Sturgeon Acipenser baerii

  • Françoise Le Menn
  • Catherine Benneteau-Pelissero
  • René Le Menn


Oogenesis of Siberian sturgeon Acipenser baerii is studied on farm fish using light and electron microscopy. We have identified five stages correlated with physiological state of the ovarian follicle constituted by the oocyte surrounded by its cellular (theca and granulosa) and a-cellular (zona radiata) layers: Stages I and II before vitellogenesis, Stages III and IV during vitellogenesis, and Stage V during maturational processes.

Following the oogonial stage, Stage I presents an elevated nucleoplasmic index, and the nucleus contains only one nucleolus. In this early stage, lipid globules were identified. Stage II is characterized by nucleoli multiplication and their migration toward the nuclear periphery. During this stage, the number of lipid globules increases in the oocyte cytoplasm. At the end of this stage, cortical alveoli get synthesized. The beginning of Stage III, called sub-Stage IIIa, corresponds to the first features of vitellogenin incorporation simultaneously with the elaboration of the zona radiata externa. During sub-Stage IIIb the zona radiata interna 1 is built. Stage IV is characterized by the first apparition of pigment granules and the elaboration of the zona radiata interna 2. Yolk accumulation increases and the oocyte volume grows considerably. Stage V corresponds to maturation with the beginning of nucleus migration toward the oocyte membrane. The zona radiata is completely synthesized, and a “jelly coat” is deposited on the outer surface of the zona radiata externa by synthesis of granulosa cells. Yolk accumulation ends at this stage.

In conclusion, ultrastructural data allow accurate determination of oogenesis stages.


Ovarian follicle Electron microscopy Light microscopy Oogenesis Acipenser baerii 


  1. Abraham M et al (1984) The cellular envelope of oocytes in Teleosts. Cell Tissue Res 235:403–410CrossRefPubMedGoogle Scholar
  2. Agulleiro M et al. (2007) High transcript level of fatty acid-protein but not very low-density lipoprotein receptor is correlated to ovarian follicle in teleost fish (Solea senegalensis). Biol Reprod PMID: 17554079Google Scholar
  3. Akimova NB et al. (1979) Growth and gametogenesis of the Siberian sturgeon (Acipenser baerii B.) under experimental and natural conditions. Proc. 7th Japan Soviet joint Symp Aquacult Tokyo: 179Google Scholar
  4. Amanze D, Lyengar A (1990) The micropyle: a sperm guidance system in teleost fertilization. Development 109:495–500PubMedGoogle Scholar
  5. Anderson E (1967) The formation of the primary envelope during oocyte differentiation in teleosts. J Cell Biol 35:193–212CrossRefPubMedPubMedCentralGoogle Scholar
  6. Badenko LV et al (1981) Method for evaluating the quality of sturgeon spawners as exemplified in the sevryuga (Acipenser stellatus) from the Kuban river. J Ichthyol 21:96–103Google Scholar
  7. Besseau L, Giraud-Guille MM (1995) Stabilization of fluid cholesteric phases of collagen to ordered gelateed matrices. J Mol Biol 251:197–202CrossRefPubMedGoogle Scholar
  8. Bouligand Y (1972) Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue Cell 4:189–217CrossRefPubMedGoogle Scholar
  9. Breton B et al (1983) Maturational glycoprotein gonadotropin and estradiol-17ß during the reproductive cycle of the female brown tour (Salmo trutta). Gen Comp Endocrinol 49:220–231CrossRefPubMedGoogle Scholar
  10. Bruslé S (1980) Fine structure of early previtellogenic oocytes in Mugil (Lisa) auratus Risso, 1810 (Teleostei, Mugilidae). Cell Tissue Res 207:121–134CrossRefGoogle Scholar
  11. Bruslé S, Bruslé J (1978) An ultrastructural study of early germs cells in Mugil (Liza) auratus Risso, 1810 (Teleostei, Mugilidae). Ann Biol Anim Biophys 18:1141–1153CrossRefGoogle Scholar
  12. Busson-Mabillot S (1969) Données récentes sur la vitellogénèse. Ann Biol 8:199–227Google Scholar
  13. Busson-Mabillot S (1973) Evolution des enveloppes de l’ovocyte et de l’œuf chez un poisson téléostéen. J Microscopie 18:23–44Google Scholar
  14. Busson-Mabillot S (1977) Un type particulier de sécrétion exocrine, celui de l’appareil adhésif de l’oeuf d’un poisson téléostéen. Biol Cell 30:233–244Google Scholar
  15. Caloianu-Yordachel M (1971) L’ovogénèse chez les poissons Acipenséridés, la morphogénèse et la constitution histochimique des membranes externes. Rev Roum Biol Zool 16(2):113–120Google Scholar
  16. Caporiccio B, Connes R (1977) Etude ultrastructurale des enveloppes périovocytaires et périovulaires de Dicentrarchus labrax L. (Poisson téléostéen). Ann Sei Nat Zool Paris 19(12ème série):351–368Google Scholar
  17. Carnaveli O et al (1999) Yolk formation and degradation during oocyte maturation in bream, Sparus aurata: involvement of two lysosomal proteinases. Biol Reprod 60:140–146CrossRefGoogle Scholar
  18. Chan L et al (1991) Vitellogenin purification and development of assay for vitellogenin receptor in oocyte membranes of the tilapia (Oreochromis niloticus Linnaeus) 1766. J Exp Zool 257:96–109CrossRefGoogle Scholar
  19. Cherr GN, Clark WH Jr (1982) Fine structure of the envelope and the micropyles of the eggs of the white sturgeon Acipenser transmontanus. Develop Growth Differ 24:341–352CrossRefGoogle Scholar
  20. Cherr GN, Clark WH Jr (1984) Jelly release in the eggs of the white sturgeon Acipenser transmontanus: an enzymatically mediated event. J Exp Zool 230:145–149CrossRefGoogle Scholar
  21. Clérot JC (1976) Les groupements mitochondriaux des cellules germinales de poissons Téléostéens Cyprinidés. 1. Etude ultrastructurale. J Ultrastruct Res 54:461–475CrossRefPubMedGoogle Scholar
  22. Clérot JC, Wegnez M (1977) Etude ultrastructurale et biochimique de l’ovocyte en prévitellogénèse de vertébrés inférieurs. Biol Cell 29:23aGoogle Scholar
  23. Davail B et al (1998) Evolution of oogenesis: the receptor fot vitellogenin from the rainbow trout. J Lipid Res 39:1929–1937PubMedGoogle Scholar
  24. De Vlaming VL et al (1980) Golsfish Carassius auratus vitellogenin: induction, isolation, properties and relationship to yolk proteins. Comp Biochem Physiol 67 b:613–623Google Scholar
  25. Droller MJ, Roth TF (1966) An electron microscope study of yolk formation during oogenesis in Lebistes reticulatus Guppyi. J Cell Biol 28:209–232CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dumont JN, Brummet AR (1980) The viteline envelope, chorion and micropyle of Fundulus heteroclitus eggs. Gamete Res 3:25–44CrossRefGoogle Scholar
  27. Fedorova LS (1976) Physiological and biochemical characteristics of the reproductive products and larvae of sturgeons during artificial rearing. J Ichthyol 16:427–436Google Scholar
  28. Flynn SR, Benfey TJ (2007) Sex differentiation and aspects of gametogenesis in shortnose sturgeon Acipenser brevirostrum Lesueur. J Fish Biol 70:1027–1044CrossRefGoogle Scholar
  29. Fontana F et al (2008) Evidence of hexaploid karyotype in shortnose sturgeon. Genome 51(2):113–119CrossRefPubMedGoogle Scholar
  30. Fridel G (1922) Les états mésomorphes de la matière. Ann Phys 18:273–474CrossRefGoogle Scholar
  31. Ginzburg AS (1968) Fertilisation in fishes and the problem of polyspermy. N O A A and National Scientific Foundation Translation, Silver Spring, p 290Google Scholar
  32. Ginzburg AS, Detlaf TA (1969) Razvitie Osetrovykh Ryb. Sozrevanie yats, oplodotvorenie i embriogenez. Izdatel’stvo “NAUKA”, Moskva, p 134Google Scholar
  33. Giraud-Guille MM (1996) Twisted liquid crystalline supramolecular arrangements in morphogenesis. Int Rev Cytol 166:59–101CrossRefPubMedGoogle Scholar
  34. Grandi G, Chicca M (2008) Histological and ultrastructural investigation of early gonad development and sex differentiation in Adriatic sturgeon Acipenser nacarii, (Acipenseriformes, Chondrostei). J Morphol 269:1238–1262CrossRefPubMedGoogle Scholar
  35. Grier H (2000) Ovarian germinal epithelium and folliculogenesis in the common snook Centropomus undecimalis (Teleostei, Centropomidae). J Morphol 243:265–281CrossRefPubMedGoogle Scholar
  36. Guraya SS (1986) The cell and molecular biology of fish oogenesis. In: Sauer HW (ed) Monographs in developmental biology, vol 18. Karger, Basel, pp 1–223Google Scholar
  37. Hamagushi S (1985) Changes in the morphology of the germinal dense bodies in primordial germ cells of the teleost Oryzias latipes. Cell Tissue Res 240:669–673CrossRefGoogle Scholar
  38. Hascall VC, Hascall GK (1981) Proteoglycans. In: Hay ED (ed) Cell biology of extracellular matrix. Plenum Press, New York, pp 39–60CrossRefGoogle Scholar
  39. Havelka M et al (2014) Fertility of a spontaneous hexaploid male Siberian sturgeon, Acipenser baerii. BMC Genet 15:5CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hay ED (1981) Cell biology of extracellular matrix. In: Hay ED (ed) . Plenum Press, New York, p 417Google Scholar
  41. Hiramatsu N et al (2004) Molecular characterisation and expression of vitellogenin receptor from the white perch (Morone Americana). Biol Reprod 70:1720–1730CrossRefPubMedGoogle Scholar
  42. Hogan JC (1978) An ultrastructural analysis of “cytoplasmic maker” in germ cells of Oryzias latipes. J Ulrastruct Res 62:237–250CrossRefGoogle Scholar
  43. Iwamatsu T et al (1997) Effect of micropylar morphology and size on rapid sperm entry into the eggs of medaka. Zool Sci 14:626–628CrossRefGoogle Scholar
  44. Kagawa H (1985) Ultrastructural and histochemical observations regarding the ovarian follicles of the amago salmon (Oncorhynchus rhodurus). J UOEH 7:27–35CrossRefPubMedGoogle Scholar
  45. Kagawa H et al (1981) Correlation of plasma estradiol-17-β and progesterone levels with ultrastructure and histochemistry of ovarian follicles in the spoted char, Salvenilus leucomaenis. Cell Tissue Res 218:315–329CrossRefPubMedGoogle Scholar
  46. Karasaki S (1967) An electron microscope study on the crystalline structure of the yolk platelets of the lamprey egg. J Ultrastruct Res 18:377–390CrossRefPubMedGoogle Scholar
  47. Kijima T, Maruyama T (1985) Histological research for the development of the gonad of the hybrid sturgeon bester (Acipenser ruthenus male x Huso huso female). Bull Nati Res Inst Aquacult 8:23–29Google Scholar
  48. Kondrat’yev AK (1977) The functional morphology of oocytes in the period of previtellogenesis in the Siberian sterlet Acipenser ruthenus M. At different time of its annual biological cycle. J Ichthyol 17:769–778Google Scholar
  49. Kornienko GG (1975) Early degenerative changes in the oocyte of the Kuban sevryuga Acipenser stellatus. J Ichthyol 15:503–507Google Scholar
  50. Le Menn F (1984) Aspects ultrastructuraux, biochimiques et endocriniens de la vitellogénèse d’un poisson téléostéen Gobius niger L. Thèse de Doctorat d’Etat, Univ. Bordeaux I, n° 814Google Scholar
  51. Le Menn F, Burzawa-Gerard E (1985) Effect of carp gonadotrophin (cGTH) and a fraction unadsorbed on concavalin A-sepharose obtained from c-GTH on vitellogenesis in the hypophysectomized marine teleost Gobius niger. Gen Comp Endocrinol 57:23–36CrossRefPubMedGoogle Scholar
  52. Le Menn F, Pelissero C (1991) Histological and ultrastructural studies of oogenesis of the Siberian sturgeon (Acipenser baerii). In: Williot P (ed) , vol 57. CEMAGREF, Antony, France, pp 23–36Google Scholar
  53. Le Menn F et al. (1999) A new approach to fish oocyte vitellogenesis. Proc 6th Int. Symp Reprod Physiol Fish, Bergen, Norway: 281–284Google Scholar
  54. Le Menn F et al. (2007) Ultrastructural aspects of the ontogeny and differentiation of ray-finned fish ovarian follicles. In: Babin PJ et al (eds) The fish oocyte: from basic studies to biochemical applications, p 1–37Google Scholar
  55. Magnin E (1967) Recherches sur les cycles de reproduction des esturgeons Acipenser fulvescens Raf. de la rivière Nottaway tributaire de la Baie James. Verh Int Ver Limnol 16:1018–1024Google Scholar
  56. Markov KP (1975) Scanning electron microscope study of the microstructure of the egg membrane in the Russian sturgeon Acipenser gueldenstaedtii B. J Ichthyol 15:739–749Google Scholar
  57. Matova N, Cooley L (2001) Comparative aspects of animal oogenesis. Dev Biol 231:291–320CrossRefPubMedGoogle Scholar
  58. Mazabraud A et al (1975) Biochemical research on oogenesis. RNA accumulation in the oocytes of teleosts. Dev Biol 44:326–332CrossRefPubMedGoogle Scholar
  59. Nagahama Y (1983) The functional morphology of teleost gonad. In: Hoar WS, Randall DJ, Donaldson EM (eds) Fish physiology. Acad Press, NY IX A, pp 223–275Google Scholar
  60. Nagahama Y (1997) 17-20ß-dihydroxy-pregnen-3-one, a maturation inducing hormone in fish oocytes: mechanisms of synthesis and action. Steroids 62:190–196CrossRefPubMedGoogle Scholar
  61. Nagahama Y et al (1995) Regulation of oocyte growth and maturation in fish. Curr Yop Dev Biol 30:103–145CrossRefGoogle Scholar
  62. Nakamura M, Nagahama Y (1985) Steroid producing cells during ovarian differentiation of the tilapia, Sarotherodon niloticus. Dev Growth Diffr 27:701–708CrossRefGoogle Scholar
  63. Nakamura M et al (1993) Ultrastructural analysis of the developing follicle during early vitellogenesis in tilapia, Oreochromis niloticus, with special references in the steroid-producing cells. Cell Tissue Res 272:33–39CrossRefGoogle Scholar
  64. Nunez Rodriguez J (1985) Contribution à l’étude de la biologie de la reproduction de la sole (Solea vulgaris Quensel 1806). Approche ultrastructurale et physiologique. Thèse 3ème Cycle, Université de Bordeaux I, n° 2061Google Scholar
  65. Parry EW (1973) Methylene blue and azure-2 as stains for lipid in osmium-fixed tissues embeded in araldite. J Clin Pathol 16:546–548CrossRefGoogle Scholar
  66. Pearse (1976) Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc Natl Acad Sc USA 73:1255–1259CrossRefGoogle Scholar
  67. Pelissero C (1988) Mise en place des bases méthodologiques pour l’étude de la reproduction chez l’esturgeon Acipenser baerii femelle. Thèse de 3ème cycle, Université de Bordeaux I, n° 2229Google Scholar
  68. Pelissero C et al (1985) Ultrastructural characteristic features of the oocyte of the sturgeon Acipenser baerii B, 7th Conf Fish Culture Europ Soc Comp Physiol Biochem Barcelona, vol A3, Promociones Publicationes Universitarias, Barcelona, p 8Google Scholar
  69. Perazzolo LM et al (1999) Expression and localization of messenger ribonucleic acid for the vitellogenin receptor in ovarian follicles throughout oogenesis in the rainbow trout, Oncorhynchus mykiss. Biol Reprod 60:1057–1068CrossRefPubMedGoogle Scholar
  70. Raïkova EV (1976) Evolution of the nuclear apparatus during oogenesis in Acipenseridae. J Embryol Exp Morphol 35(8):667–687PubMedGoogle Scholar
  71. Reynolds ES (1963) The use of lead citrate at hight pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208CrossRefPubMedPubMedCentralGoogle Scholar
  72. Riehl R (1978) Electronen mikroskopische und autoradiographische Untersuchungen an den Dotterkernen in den Oocyten von Noemacheilus barbatulus L. und Phoxinus phoxinus L. (Pisces, Teleostei). Cytobiologie 17:137–145PubMedGoogle Scholar
  73. Rzepkowska M, Ostaszewska T (2013) Proliferating cell nuclear antigen and Vasa protein expression during gonadal development and sexual differentiation in cultured Siberian (Acipenser baerii Brandt, 1869) and Russian (Acipenser gueldenstaedtii Brandt, Ratzeburg, 1833) sturgeon. Rev Aquac 5:1–14CrossRefGoogle Scholar
  74. Selman K, Wallace RA (1982) The inter- and intracellular passage of protein through the ovarian follicle in teleosts. In: Proc. Int Symp Reprod Physiol Fish. Wageningen, The Netherlands, p 57Google Scholar
  75. Selman K, Wallace RA (1989) Cellular aspects of oocyte growth in teleost. Zool Sci 6:211–231Google Scholar
  76. Selman K et al (1993) Stages of oocyte development in the zebrafish, Brachidanio rerio. J Morphol 218:203–224CrossRefGoogle Scholar
  77. Senthilkumaran B et al (2004) A shift un steroidogenesis occurring in ovarian follicles prior to oocyte maturation. Mol Cell Endocrinol 215:11–18CrossRefPubMedGoogle Scholar
  78. Sire MF et al (1994) Involvement of the lysosomal system in yolk protein deposit and degradation during vitellogenesis and embryonic development in trout. J Exp Zool 269:69–83CrossRefGoogle Scholar
  79. Stifani S et al (1990) Regulation of oogenesis: the piscine receptor for vitellognin. Biochem Biophys Acta 1045:271–279CrossRefPubMedGoogle Scholar
  80. Tesoriero JV (1977) Formation of the chorion (zona pellucida) in the teleost Oryzias latipes. I. Morphology of early oogenesis. J Ultrastruct Res 59:282–291CrossRefPubMedGoogle Scholar
  81. Toshimori K, Yasuzuni F (1979) Gap junctions between microvillosities of the oocyte and follicular cells in the teleost Plecoglossus altivelis. Z Mikrosk Anat Forsch 93:458–164PubMedGoogle Scholar
  82. Trusov VZ (1975) Maturation in the gonads of the female sevryuga Acipenser stellatus during its life in the ocean. J Ichthyol 15:61–72Google Scholar
  83. Ulrich E (1969) Etude des ultrastructures au cours de l’ovogenèse d’un poisson téléostéen le Danio Brachydanio rerio. J Microsc 8:447–473Google Scholar
  84. Veshchev PV (1982) Reproduction of sterlet Acipenser ruthenus (Acipenseridae) in the lower volga. J Ichthyol 22:40–46Google Scholar
  85. Vrackq R (1974) Basal lamina scaffold: anatomy and significance for maintenance of orderly tissue structure. Am J Pathol 77:314–346Google Scholar
  86. Wallace RA, Selman K (1981) Cellular and dynamic aspects of oocyte growth in teleosts. Am Zool 21:325–343CrossRefGoogle Scholar
  87. Wallace RA et al. (1983) The oocyte as an endocytotic cell. In: Molecular biology of egg maturation. Ciba Found Symp Eds Pitman Books London: p 228–248Google Scholar
  88. Williot P, Brun R (1982a) Résultats sur la reproduction d’Acipenser baerii en 1982. Bull Fr Piscic 287:19–22CrossRefGoogle Scholar
  89. Williot P, Rouault T (1982b) Compte rendu d’une première reproduction en France de l’esturgeon sibérien Acipenser baerii. Bull Fr Piscic 286:255–261CrossRefGoogle Scholar
  90. Woods JW, Roth TF (1980) Selective protein transport: identity of the solubilized phosvitin receptor from chicken oocyte. J Supramol Struct 14:473–480CrossRefPubMedGoogle Scholar
  91. Wourms JP (1976) Annual fish oogenesis. I. Differentiation of the mature oocyte and formation of the primary envelope. Dev Biol 50:338–354CrossRefPubMedGoogle Scholar
  92. Wourms JP, Sheldon H (1976) Annual fish oogenesis. II. Formation of the secondary egg envelope. Dev Biol 50:355–366CrossRefPubMedGoogle Scholar
  93. Yamashita M (1998) Molecular mechanisms of meiotic maturation and arrest in fish and amphibian oocytes. Semin Cell Dev Biol 9:569–579CrossRefPubMedGoogle Scholar
  94. Yusko S et al (1981) Receptor-mediated vitellogenin binding to chicken oocytes. Biochem J 200:43–50CrossRefPubMedPubMedCentralGoogle Scholar
  95. Zelazowska M et al. (2015) Ovarian nests in immature and mature sturgeons (Acipenser gueldenstaedtii) and paddlefish (Polyodon spathula) (Chondrostei, Acipenseriformes) comprise early previtellogenic oocytes. Tissue CellGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Françoise Le Menn
    • 1
  • Catherine Benneteau-Pelissero
    • 2
    • 3
    • 4
  • René Le Menn
    • 1
  1. 1.PessacFrance
  2. 2.University of BordeauxTalence CedexFrance
  3. 3.U862 Inserm, Magendie NeurocentreBordeaux CedexFrance
  4. 4.Bordeaux Sciences AgroGradignanFrance

Personalised recommendations