Advertisement

Iris Segmentation Using Fully Convolutional Encoder–Decoder Networks

  • Ehsaneddin Jalilian
  • Andreas Uhl
Chapter
Part of the Advances in Computer Vision and Pattern Recognition book series (ACVPR)

Abstract

As a considerable breakthrough in artificial intelligence, deep learning has gained great success in resolving key computer vision challenges. Accurate segmentation of the iris region in the eye image plays a vital role in efficient performance of iris recognition systems, as one of the most reliable systems used for biometric identification. In this chapter, as the first contribution, we consider the application of Fully Convolutional Encoder–Decoder Networks (FCEDNs) for iris segmentation. To this extent, we utilize three types of FCEDN architectures for segmentation of the iris in the images, obtained from five different datasets, acquired under different scenarios. Subsequently, we conduct performance analysis, evaluation, and comparison of these three networks for iris segmentation. Furthermore, and as the second contribution, in order to subsidize the true evaluation of the proposed networks, we apply a selection of conventional (non-CNN) iris segmentation algorithms on the same datasets, and similarly evaluate their performances. The results then get compared against those obtained from the FCEDNs. Based on the results, the proposed networks achieve superior performance over all other algorithms, on all datasets.

Notes

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 700259.

References

  1. 1.
    U. Andreas, W. Peter, Multi-stage visible wavelength and near infrared iris segmentation framework, in Proceedings of the International Conference on Image Analysis and Recognition (ICIAR’12), LNCS (Aveiro, Portugal, 2012), pp. 1–10Google Scholar
  2. 2.
    V. Badrinarayanan, A. Kendall, R. Cipolla, Segnet: a deep convolutional encoder-decoder architecture for image segmentation (2015), arXiv:1511.00561
  3. 3.
    L. Bottou, Stochastic gradient descent tricks, in Neural Networks: Tricks of the Trade (Springer, 2012), pp. 421–436Google Scholar
  4. 4.
    R.P. Broussard, L.R. Kennell, D.L. Soldan, R.W. Ives, Using artificial neural networks and feature saliency techniques for improved iris segmentation, in International Joint Conference on Neural Networks, 2007. IJCNN 2007 (IEEE, 2007), pp. 1283–1288Google Scholar
  5. 5.
    Y. Chen, M. Adjouadi, A. Barreto, N. Rishe, J. Andrian, A computational efficient iris extraction approach in unconstrained environments, in IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems, 2009. BTAS’09 (IEEE, 2009), pp. 1–7Google Scholar
  6. 6.
    J. Daugman, Recognizing people by their iris patterns. Inf. Secur. Tech. Rep. 3(1), 33–39 (1998)CrossRefGoogle Scholar
  7. 7.
    J. Daugman, How iris recognition works. Int. Conf. Image Process. 1, I-33–I-36 (2002)CrossRefGoogle Scholar
  8. 8.
    J.G. Daugman, High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1148–1161 (1993)CrossRefGoogle Scholar
  9. 9.
    J. Denker, Y. Lecun, Transforming neural-net output levels to probability distributions, in Proceedings of the 3rd International Conference on Neural Information Processing Systems (Morgan Kaufmann Publishers Inc, 1990), pp. 853–859Google Scholar
  10. 10.
    V. Dorairaj, N.A. Schmid, G. Fahmy, Performance evaluation of non-ideal iris based recognition system implementing global ica encoding, in IEEE International Conference on Image Processing 2005, vol. 3 (IEEE, 2005), pp. III–285Google Scholar
  11. 11.
    Y. Gal, Z. Ghahramani, Bayesian convolutional neural networks with bernoulli approximate variational inference (2015), arXiv:1506.02158
  12. 12.
    Y. Gal, Z. Ghahramani, Dropout as a bayesian approximation: representing model uncertainty in deep learning (2015), arXiv:1506.02142
  13. 13.
    A. Gangwar, A. Joshi, Deepirisnet: deep iris representation with applications in iris recognition and cross-sensor iris recognition, in 2016 IEEE International Conference on Image Processing (ICIP) (IEEE, 2016), pp. 2301–2305Google Scholar
  14. 14.
    S. Gupta, R. Girshick, P. Arbeláez, J. Malik, Learning rich features from rgb-d images for object detection and segmentation, in European Conference on Computer Vision (Springer, 2014), pp. 345–360Google Scholar
  15. 15.
    B. Hariharan, P. Arbeláez, R. Girshick, J. Malik, Simultaneous detection and segmentation. In European Conference on Computer Vision (Springer, 2014), pp. 297–312Google Scholar
  16. 16.
    H. Hofbauer, F. Alonso-Fernandez, P. Wild, J. Bigun, A. Uhl, A ground truth for iris segmentation, in Proceedings of the 22nd International Conference on Pattern Recognition (ICPR’14) (Stockholm, Sweden, 2014), 6ppGoogle Scholar
  17. 17.
    H. Hofbauer, F. Alonso-Fernandez, J. Bigun, A. Uhl, Experimental analysis regarding the influence of iris segmentation on the recognition rate. IET Biom. 5(3), 200–211 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Huang, Y. Wang, T. Tan, J. Cui, A new iris segmentation method for recognition, in (ICPR 2004). Proceedings of the 17th International Conference on Pattern Recognition, 2004, vol. 3 (IEEE, 2004), pp. 554–557Google Scholar
  19. 19.
    S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift (2015), arXiv:1502.03167
  20. 20.
    A. Kendall, V. Badrinarayanan, R. Cipolla, Bayesian segnet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding (2015), arXiv:1511.02680
  21. 21.
    W. Kong, D. Zhang, Accurate iris segmentation based on novel reflection and eyelash detection model, in Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing, 2001 (IEEE, 2001), pp. 263–266Google Scholar
  22. 22.
    A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in Advances in Neural Information Processing Systems (2012), pp. 1097–1105Google Scholar
  23. 23.
    R.D. Labati, F. Scotti, Noisy iris segmentation with boundary regularization and reflections removal. Image Vis. Comput. 28(2), 270–277 (2010)CrossRefGoogle Scholar
  24. 24.
    Y. Le Cun, D. Touresky, G. Hinton, T. Sejnowski, A theoretical framework for back-propagation, in The Connectionist Models Summer School, vol. 1 (1988), pp. 21–28Google Scholar
  25. 25.
    Y. Le Cun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  26. 26.
    Y.-H. Li, M. Savvides, An automatic iris occlusion estimation method based on high-dimensional density estimation. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 784–796 (2013)CrossRefGoogle Scholar
  27. 27.
    N. Liu, H. Li, M. Zhang, J. Liu, Z. Sun, T. Tan, Accurate iris segmentation in non-cooperative environments using fully convolutional networks, in 2016 International Conference on Biometrics (ICB) (IEEE, 2016), pp. 1–8Google Scholar
  28. 28.
    N. Liu, M. Zhang, H. Li, Z. Sun, T. Tan, Deepiris: learning pairwise filter bank for heterogeneous iris verification. Pattern Recogn. Lett. 82, 154–161 (2016)CrossRefGoogle Scholar
  29. 29.
    X. Liu, K.W. Bowyer, P.J. Flynn, Experiments with an improved iris segmentation algorithm, in Fourth IEEE Workshop on Automatic Identification Advanced Technologies (AutoID’05) (IEEE, 2005), pp. 118–123Google Scholar
  30. 30.
    J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 3431–3440Google Scholar
  31. 31.
    L. Ma, T. Tan, Y. Wang, D. Zhang, Personal identification based on iris texture analysis. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1519–1533 (2003)CrossRefGoogle Scholar
  32. 32.
    H. Noh, S. Hong, B. Han, Learning deconvolution network for semantic segmentation, in Proceedings of the IEEE International Conference on Computer Vision (2015), pp. 1520–1528Google Scholar
  33. 33.
    D. Petrovska, A. Mayoue, Description and documentation of the biosecure software library, in Project No IST-2002-507634-BioSecure, Deliverable (2007)Google Scholar
  34. 34.
    A. Radman, K. Jumari, N. Zainal, Iris segmentation in visible wavelength images using circular gabor filters and optimization. Arab. J. Sci. Eng. 39(4), 3039–3049 (2014)CrossRefGoogle Scholar
  35. 35.
    K.B. Raja, R. Raghavendra, V.K. Vemuri, C. Busch, Smartphone based visible iris recognition using deep sparse filtering. Pattern Recogn. Lett. 57, 33–42 (2015)CrossRefGoogle Scholar
  36. 36.
    C. Rathgeb, A. Uhl, P. Wild, Iris Recognition: From Segmentation to Template Security, vol. 59, Advances in Information Security (Springer, Berlin, 2013)Google Scholar
  37. 37.
    C. Rathgeb, A. Uhl, P. Wild, H. Hofbauer, Design decisions for an iris recognition sdk, in Handbook of Iris Recognition, 2nd edn., Advances in Computer Vision and Pattern Recognition, ed. by K. Bowyer, M.J. Burge (Springer, Berlin, 2016)CrossRefGoogle Scholar
  38. 38.
    C.J.V. Rijsbergen, Information Retrieval, 2nd edn. (Butterworth-Heinemann, Newton, 1979)zbMATHGoogle Scholar
  39. 39.
    T. Rongnian, W. Shaojie, Improving iris segmentation performance via borders recognition, in 2011 International Conference on Intelligent Computation Technology and Automation (ICICTA), vol. 2 (IEEE, 2011), pp. 580–583Google Scholar
  40. 40.
    O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical image segmentation, in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2015), pp. 234–241Google Scholar
  41. 41.
    K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition (2014), arXiv:1409.1556
  42. 42.
    N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetzbMATHGoogle Scholar
  43. 43.
    C.-W. Tan, A. Kumar, Unified framework for automated iris segmentation using distantly acquired face images. IEEE Trans. Image Process. 21(9), 4068–4079 (2012)MathSciNetCrossRefGoogle Scholar
  44. 44.
    C.-W. Tan, A. Kumar, Towards online iris and periocular recognition under relaxed imaging constraints. IEEE Trans. Image Process. 22(10), 3751–3765 (2013)MathSciNetCrossRefGoogle Scholar
  45. 45.
    C.-L. Tisse, L. Martin, L. Torres, M. Robert et al., Person identification technique using human iris recognition, in Proceedings of Vision Interface (2002), pp. 294–299Google Scholar
  46. 46.
    P.V. Tran, A fully convolutional neural network for cardiac segmentation in short-axis mri, in CoRR (2016), arXiv:1604.00494
  47. 47.
    A. Uhl, P. Wild, Weighted adaptive hough and ellipsopolar transforms for real-time iris segmentation, in Proceedings of the 5th IAPR/IEEE International Conference on Biometrics (ICB’12) (New Delhi, India, 2012), pp. 1–8Google Scholar
  48. 48.
    P. Wild, H. Hofbauer, J. Ferryman, A. Uhl, Segmentation-level fusion for iris recognition, in Proceedings of the International Conference of the Biometrics Special Interest Group (BIOSIG’15) (Darmstadt, Germany, 2015), p. 12Google Scholar
  49. 49.
    R.P. Wildes, Iris recognition: an emerging biometric technology. Proc. IEEE 85(9), 1348–1363 (1997)CrossRefGoogle Scholar
  50. 50.
    Z. Zhao, K. Ajay, An accurate iris segmentation framework under relaxed imaging constraints using total variation model, in Proceedings of the IEEE International Conference on Computer Vision (2015), pp. 3828–3836Google Scholar
  51. 51.
    J. Zuo, N. D. Kalka, N.A. Schmid, A robust iris segmentation procedure for unconstrained subject presentation, in 2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference (IEEE, 2006), pp. 1–6Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer SciencesUniversity of SalzburgSalzburgAustria

Personalised recommendations