Hourly Campus Water Demand Forecasting Using a Hybrid EEMD-Elman Neural Network Model

Conference paper
Part of the Environmental Earth Sciences book series (EESCI)


Accurate and reliable water demand forecasting is important for effective and sustainable planning and use of water supply infrastructures. In this paper, a hybrid EEMD-Elman neural network model for hourly campus water demand forecast is proposed, aiming at improving the accuracy and reliability of water demand forecast. The proposed method combines the Elman neural network, EEMD method, and phase space reconstruction method providing favorable dynamic forecast characteristics and improving the forecasting accuracy and reliability. Simulation results show that the proposed model provides a better performance of hourly campus water demand forecast by using the real data of water usage of our campus.


Elman neural networks EEMD Phase space reconstruction Water demand forecasting 


  1. 1.
    Qin, T.L., et al.: Water demand forecast in the Baiyangdian basin with the extensive and low-carbon economic modes. J. Appl. Math. 2014, 1–10 (2014).  https://doi.org/10.1155/2014/6734CrossRefGoogle Scholar
  2. 2.
    Beal, C.D.: SEQ residential end use study. J. Aust. Water Assoc. 38(1), 80–84 (2011). https://www.researchgate.net/publication/279662589)
  3. 3.
    Fielding, K.S., et al.: Using individual householder survey responses to predict household environmental outcomes: the cases of recycling and water conservation. Resour. Conserv. Recycl. 106, 90–97 (2016).  https://doi.org/10.1016/j.resconrec.2015.11.009CrossRefGoogle Scholar
  4. 4.
    Shen, J.-C., et al.: Real-time correction of water stage forecast using combination of forecasted errors by time series models and Kalman filter method. Stoch. Env. Res. Risk Assess. 29(7), 1903–1920 (2015).  https://doi.org/10.1007/s00477-015-1074-9CrossRefGoogle Scholar
  5. 5.
    Luo, X., Jiaqi Yang, J.: Study on the imbalance of shipping demand and supply of inland water transportation of Yangtze River. ICTIS 2013: Improving Multimodal Transportation Systems-Information, Safety, and Integration, p. 2211–2221 (2013).  https://doi.org/10.1061/9780784413036.297
  6. 6.
    Adamowski, J., Chan, H.-F., Prasher, S.O.: Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Res. Res. 48(1) (2012).  https://doi.org/10.1029/2010wr009945
  7. 7.
    Mombeni, H.A., et al.: Estimation of water demand in Iran based on SARIMA models. Environ. Model. Assess. 18(5), 559–565 (2013).  https://doi.org/10.1007/s10666-013-9364-4CrossRefGoogle Scholar
  8. 8.
    Braun, M., et al.: 24-hours demand forecasting based on SARIMA and support vector machines. Procedia Eng. 89, 926–933 (2014).  https://doi.org/10.1016/j.proeng.2014.11.526CrossRefGoogle Scholar
  9. 9.
    Mombeni, H.A., et al.: Reducing water consumption after targeted subsidy plan in Iran. Water Resour. 42(3), 389–396 (2015).  https://doi.org/10.1134/S0097807815030100CrossRefGoogle Scholar
  10. 10.
    Vijayalaksmi, D.P., Jinesh Babu, K.S.: Water supply system demand forecasting using adaptive neuro-fuzzy inference system. Aquat. Procedia 4, 950–956 (2015).  https://doi.org/10.1016/j.aqpro.2015.02.119CrossRefGoogle Scholar
  11. 11.
    Candelieri, A., Archetti, F.: Identifying typical urban water demand patterns for a reliable short-term forecasting—the icewater project approach. Procedia Eng. 89, 1004–1012 (2014).  https://doi.org/10.1016/j.proeng.2014.11.218CrossRefGoogle Scholar
  12. 12.
    Adamowski, J.F.: Peak daily water demand forecast modeling using artificial neural networks. J. Water Res. Plann. Manage. 134(2), 119–128 (2008).  https://doi.org/10.1061/(ASCE)0733-9496(2008)134:2(119)CrossRefGoogle Scholar
  13. 13.
    Bennett, C., Stewart, R.A., Beal, C.D.: ANN-based residential water end-use demand forecasting model. Expert Syst. Appl. 40(4), 1014–1023 (2013).  https://doi.org/10.1016/j.eswa.2012.08.012CrossRefGoogle Scholar
  14. 14.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986).  https://doi.org/10.1038/323533a0CrossRefGoogle Scholar
  15. 15.
    Jia, W., et al.: Study on optimized Elman neural network classification algorithm based on PLS and CA. Comput. Intell. Neurosci. 2014, 724317 (2014).  https://doi.org/10.1155/2014/724317CrossRefGoogle Scholar
  16. 16.
    Wu, Z.H., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(1), 1–41 (2009).  https://doi.org/10.1142/S1793536909000047CrossRefGoogle Scholar
  17. 17.
    Wang, J., Zhang, W., Li, Y., Wang, J., Dang, Z.: Forecasting wind speed using empirical mode decomposition and Elman neural network. Appl. Soft Comput. 23, 452–459 (2014).  https://doi.org/10.1016/j.asoc.2014.06.027CrossRefGoogle Scholar
  18. 18.
    Lin, C.-M., Boldbaatar, E.-A.: Autolanding control using recurrent wavelet Elman neural network. IEEE Trans. Syst. Man Cybern. Syst. 45(9), 1281–1291 (2015).  https://doi.org/10.1109/tsmc.2015.2389752CrossRefGoogle Scholar
  19. 19.
    Kim, H.S., Eykholt, R., Salas, J.D.: Nonlinear dynamics, delay times and embedding windows. Phys. D 127, 48–60 (1999).  https://doi.org/10.1016/s0167-2789(98)00240-1CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Information and Electric EngineeringHebei University of EngineeringHandanChina

Personalised recommendations