Applicability of Runoff Simulation in the Zhanghe Upstream Based on SWAT Model

Conference paper
Part of the Environmental Earth Sciences book series (EESCI)

Abstract

Sequential Uncertainty Fitting-2 (SUFI-2) with ArcSWAT2009 was used to test the performance of SWAT model for predicting runoff in the Zhanghe upstream. Parameter calibration and distributed hydrologic model building for the Zhanghe upstream were performed by coupling manual and auto-calibration methods. Monthly simulation values of R2 and NSE were 0.83 and 0.79 during the calibration period, and 0.83 and 0.76 during the validation period, respectively. The results showed that SWAT model could be successfully used to model long-term continuous runoff in the study area. The calibrated model can be used for further analysis of the effects of the climate and land use change, water quality analysis and sediment yield analysis.

Keywords

Runoff simulation SUFI-2 algorithm SWAT-CUP SWAT model 

Notes

Acknowledgements

This study was supported by Ministry of Water Resources’ special funds for scientific research on public causes of China (No. 201401030), Key Educational Commission of Hebei Province, China (No. ZH2012044), Youth Foundation Project of Hebei Provincial Department of Education China (No. 2017039).

References

  1. 1.
    Weng, S.Q., Huang, G.H., Li, Y.P.: An integrated scenario-based multi-criteria decision support system for water resources management and planning—a case study in the Haihe River Basin. Expert Syst. Appl. 37, 8242–8254 (2010).  https://doi.org/10.1016/j.eswa.2010.05.061CrossRefGoogle Scholar
  2. 2.
    Guo, Y., Shen, Y.: Quantifying water and energy budgets and the impacts of climatic and human factors in the Haihe River Basin, China: 1. Model and validation. J. Hydrol. 528, 206–216 (2015).  https://doi.org/10.1016/j.jhydrol.2015.06.039CrossRefGoogle Scholar
  3. 3.
    Guo, Y., Shen, Y.: Quantifying water and energy budgets and the impacts of climatic and human factors in the Haihe River Basin, China: 2 Trends and implications to water resources. J. Hydrol. 527, 251–261 (2015)CrossRefGoogle Scholar
  4. 4.
    Zou, J., Xie, Z., Zhan, C. et al.: Effects of anthropogenic groundwater exploitation on land surface processes: A case study of the Haihe River Basin, northern China. J. Hydrol. 524, 625–641 (2015). doi: https://doi.org/10.1016/j.jhydrol.2015.03.026CrossRefGoogle Scholar
  5. 5.
    Ke, X., Wang, C., Jing, D., et al.: Assessing water quality by ratio of the number of dominant bacterium species between surface/subsurface sediments in Haihe River Basin. Mar. Pollut. Bull. 98, 267–273 (2015).  https://doi.org/10.1016/j.marpolbul.2015.06.003CrossRefGoogle Scholar
  6. 6.
    Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R.: Large area hydrologic modeling and assessment, part I: model development. J. Am. Water Resour. Assoc. 34, 73–89 (1998).  https://doi.org/10.1111/j.1752-1688.1998.tb05961CrossRefGoogle Scholar
  7. 7.
    Morgan, R.P.C.: A simple approach to soil loss prediction: a revised Morgan–Morgan–Finney model. CATENA 44, 305–320 (2001).  https://doi.org/10.1016/S0341-8162(00)00171-5CrossRefGoogle Scholar
  8. 8.
    Grønsten, H.A., Lundekvam, H.: Prediction of surface runoff and soil loss in south eastern Norway using the WEPP Hillslope model. Soil Tillage Res. 85, 186–199 (2006).  https://doi.org/10.1016/j.still.2005.01.008CrossRefGoogle Scholar
  9. 9.
    Debele, B., Srinivasan, R., Yves Parlange, J.: Coupling upland watershed and downstream water hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex River Basins. Environ. Model. Assess. (2006).  https://doi.org/10.1007/s10666-006-9075 -1
  10. 10.
    Zhang, Y., Xia, J., Shao, Q., Zhai, X.: Water quantity and quality simulation by improved SWAT in highly regulated Huai River Basin of China. Stoch. Environ. Res. Risk Assess. 27, 11–27 (2011).  https://doi.org/10.1007/s00477-011-0546-9CrossRefGoogle Scholar
  11. 11.
    Sheng, X.B., Sun, J.Z., Liu, Y.X.: Effect of land-use and land-cover change on nutrients in soil in Bashang area China. J. Environ. Sci. 15, 548–553 (2003).  https://doi.org/10.1007/s40333-013-0143-5CrossRefGoogle Scholar
  12. 12.
    Wu, W., Hall, C.A.S., Scatena, F.N.: Modelling the impact of recent land-cover changes on the stream flows in Northeastern Puerto Rico. Hydrol. Process. 21, 2944–2956 (2007).  https://doi.org/10.1002/hyp.6515CrossRefGoogle Scholar
  13. 13.
    Shrestha, B., Babel, M.S., Maskey, S., van Griensven, A., Uhlenbrook, S., Green, A., Akkharath, I.: Impact of climate change on sediment yield in the Mekong River Basin: a case study of the Nam ou Basin, Lao PDR. Hydrol. Earth Syst. Sci. 17, 1–20 (2013).  https://doi.org/10.5194/hess-17-1-2013CrossRefGoogle Scholar
  14. 14.
    Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitne, J., Zobrist, J., Srinivasan, R.: Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 333, 413–430 (2007).  https://doi.org/10.1016/j.jhydrol.2006.09.014CrossRefGoogle Scholar
  15. 15.
    Yesuf, H.M., Assefa, M.M., Zeleke, G., Alamirew, T.: Streamflow prediction uncertainty analysis and verification of SWAT model in a tropical watershed. Environ. Earth Sci. 75, 806–820 (2016).  https://doi.org/10.1007/s12665-016-5636-z
  16. 16.
    Zhang, D., Chen, X., Yao, H., et al.: Moving SWAT model calibration and uncertainty analysis to an enterprise Hadoop-based cloud. Environ. Model Softw. 84, 140–148 (2016).  https://doi.org/10.1016/j.envsoft.2016.06.024CrossRefGoogle Scholar
  17. 17.
    Abbaspour, K.C., Johnson, C., van Genuchten, M.T.: Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J. 3, 1340–1352 (2004).  https://doi.org/10.2113/3.4.1340CrossRefGoogle Scholar
  18. 18.
    Vilaysane, B., Takara, K., Luo, P., et al.: Hydrological stream flow modelling for calibration and uncertainty analysis using SWAT model in the Xedone River Basin Lao PDR. Procedia Environ. Sci. 28, 380–390 (2015).  https://doi.org/10.1007/s10666-006-9075-1CrossRefGoogle Scholar
  19. 19.
    Gassman, P.W., Reyes, M.R., Green, C.H., Arnold, J.G.: The soil and water assessment tool: historical development, applications, and future research directions. Trans. Asabe. 50, 1211–1250 (2007).  https://doi.org/10.13031/2013.23637CrossRefGoogle Scholar
  20. 20.
    Abbaspour, K.C.: SWAT-CUP2. SWAT Calibration and Uncertainty Programs, Version 2. 2009Google Scholar
  21. 21.
    Beven, K., Binley, A.: The future of distributed models—model calibration and uncertainty prediction. Hydrol. Process. 6, 279–298 (1992).  https://doi.org/10.1002/hyp.3360060305CrossRefGoogle Scholar
  22. 22.
    Alamirew, C.D.: Modeling of hydrology and soil erosion in upper Awash River Basin. Univ. Bonn, Institut für Städtebau, Bodenordnung und Kulturtechnik. 223, 235–241 (2006)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hebei University of EngineeringHandanChina
  2. 2.Hebei Collaborative Innovation Center of Coal Exploitation, Key Laboratory of Resource Exploration Research of HebeiHebei University of EngineeringHandanChina

Personalised recommendations