Abstract
The study of the biology of aggression has always been limited by complex research issues and ethical limitations in performing human research. Early research relied on anecdotal reports in the literature and animal models. Anecdotal studies are inherently limited in their generalizability, as are animal studies which may reveal some basic mechanisms of aggression in more primitive animals but are unable to take into account those changes which occur in brain organization with the development of the more complex areas seen in human research. This research has more recently been enhanced by the introduction of neuroradiological devices which can measure the structure of the human brain (e.g., computed tomography [CT] and magnetic resonance imaging [MRI]) and the metabolic unction of the human brain (e.g., positron emission tomography [PET] and functional magnetic resonance imaging [fMRI]) in intact and live human brain, although not when they are showing violent tendencies. This chapter reviews the major trends in this research.
Similar content being viewed by others
References
Alekseyenko, O. V., Lee, C., & Kravitz, E. A. (2010). Targeted manipulation of serotonergic neurotransmission affects the escalation of aggression in adult male Drosophila melanogaster. PLoS One, 5, 1–11.
Alekseyenko, O. V., Chan, Y. B., Li, R., & Kravitz, E. A. (2013). Single dopaminergic neurons that modulate aggression in drosophila. Proceedings of the National Academy of Sciences, 110(15), 6151–6156.
Amen, D. G., Stubblefield, M., Carmicheal, B., & Thisted, R. (1996). Brain SPECT findings and aggressiveness. Annals of Clinical Psychiatry, 8, 129–137. doi:10.3109/10401239609147750
Andrews, J. C., Fernandez, M. P., Yu, Q., Leary, G. P., Leung, A. K., Kavanaugh, M. P., … Certel, S. J. (2010). Octopamine neuromodulation regulates Gr32a-linked aggression and courtship pathways in Drosophila males. PLoS Genetics, 10, 1–14.
Antonucci, A. S., Gansler, D. A., Tan, S., Bhadelia, R., Patz, S., & Fulwiler, C. (2006). Orbitofrontal correlates of aggression and impulsivity in psychiatric patients. Psychiatry Research, 147, 213–220. doi:10.1016/j.pscychresns.2005.05.016
Baier, A., Wittek, B., & Bremb, B. (2002). Drosophila as a new model organism for the neurobiology of aggression? The Journal of Experimental Biology, 205, 1233–1240.
Bermejo, M. (2004). Home-range use and intergroup encounters in western gorillas at Lossi forest, North Congo. American Journal of Primatology, 64, 223–232.
Bolea, A. S. (2010). Neurofeedback treatment of chronic inpatient schizophrenia. Journal of Neurotherapy, 14(1), 47–54.
Bouwknecht, J. A., van der Gugten, J., Hijzen, T. H., Maes, R. A., Hen, R., & Olivier, B. (2001). Male and female 5-HT1B receptor knockout mice have higher body weights than wildtypes. Physiology & Behavior, 74, 507–516.
Bradley, B. J., Robbins, M. M., Williamson, E. A., Steklis, H. D., Steklis, N. G., Eckhardt, N., & Vigilant, L. (2005). Mountain gorilla tug-of-war: Silverbacks have limited control over reproduction in multimale groups. Proceedings of the National Academy of Sciences of the United States of America, 102, 9418–9423.
Cavigelli, S. A., Dubovick, T., Levash, W., Jolly, A., & Pitts, A. (2003). Female dominance status and fecal corticoids in a cooperative breeder with low reproductive skew: Ring-tailed lemurs (Lemur catta). Hormones and Behavior, 43, 166–179.
Cha, J., Fekete, T., Siciliano, F., Biezonski, D., Greenhill, L., Pliszka, S. R., … Posner, J. (2015). Neural correlates of aggression in medication-naïve children with ADHD: Multivariate analysis of morphometry and tractography. Neuropsychopharmacology, 40, 1717–1725. doi:10.1038/npp.2015.18
Chan, Y. B., & Kravitz, E. A. (2007). Specific subgroups of Frum neurons control sexually dimorphic patterns of aggression in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 104, 19577–19582.
Coccaro, E. F., McCloskey, M. S., Fitzgerald, D. A., & Phan, K. L. (2007). Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biological Psychiatry, 62, 168–178. doi:10.1016/j.biopsych.2006.08.024
Convit, A., Czobor, P., & Volavka, J. (1991). Lateralized abnormality in the EEG of persistently violent psychiatric inpatients. Biological Psychiatry, 30, 363–370. doi:10.1016/0006-3223(91)90292-T
Cunha-Bang, S. D., McMahon, B., Fischer, P. M., Jensen, P. S., Svarer, C., & Knudsen, G. M. (2016). High trait aggression in men associated with low 5-HT levels, as indexed by 5-HT4 receptor binding. Social Cognitive and Affective Neuroscience, 11, 548–555. doi:10.1093/scan/nsv140
Davidson, R. J., Putnam, K. M., & Larson, C. L. (2000). Dysfunction in the neural circuitry of emotion regulation—A possible prelude to violence. Science, 289, 591–594. doi:10.1126/science.289.5479.591
de Almeida, R. M., & Miczek, K. A. (2002). Aggression escalated by social instigation or by discontinuation of reinforcement (“frustration”) in mice: Inhibition by anpirtoline: A 5-HT1B receptor agonist. Neuropharmacology, 27, 171–181.
Deckel, A. W., Hesselbrock, V., & Bauer. (1996). Antisocial personality disorder, childhood delinquency, and frontal brain functioning: EEG and neuropsychological findings. Journal of Clinical Psychology, 52, 639–650. doi:10.1002/(SICI)1097-4679(199611)52:6<639::AID-JCLP6>3.0.CO;2-F
Durbak, L., Pfaff, D., & Ogawa, S. (2002). Role of the estrogen receptor beta gene in testosterone inducible aggression in female mice. Society for Neuroscience, 288.
Ellingson, R. J. (1954). The incidence of EEG abnormality among patients with mental disorders of apparently nonorganic origin: A critical review. The American Journal of Psychiatry, 111, 263–275. doi:10.1176/ajp.111.4.263
Fernandez, M. P., & Kravitz, E. A. (2013). Aggression and courtship in Drosophila: Pheromonal communication and sex recognition. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural and Behavioral Physiology, 199, 1065–1076.
Ferrari, P. F., Palanza, P., Rodgers, R. J., Mainardi, M., & Parmigiani, S. (1996). Comparing different forms of male and female aggression in wild and laboratory mice: An ethopharmacological study. Physiology & Behavior, 60, 549–553.
Fish, E. W., DeBold, J. F., & Miczek, K. A. (2005). Escalated aggression as a reward: Corticosterone and GABAA receptor positive modulators in mice. Psychopharmacology, 182, 116–127.
Gatzke-Kopp, L. M., Jetha, M. K., & Segalowitz, S. J. (2014). The role of resting frontal EEG asymmetry in psychopathology: Afferent or efferent filter? Developmental Psychobiology, 56, 73–85. doi:10.1002/dev.21092
Gourley, S. L., DeBold, J. F., Yin, W., Cook, J., & Miczek, K. A. (2004). Benzodiazepines and heightened aggressive behavior in rats: Reduction by GABAA/α1 receptor antagonists. Psychopharmacology, 178, 232–240.
Hare, B., Wobbler, V., & Wrangham, R. (2012). The self-domestication hypothesis: Evolution of bonobo psychology is due to selection against aggression. Animal Behaviour, 83, 573–585.
Harmon-Jones, E., & Allen, J. B. (1998). Anger and frontal brain activity: EEG asymmetry consistent with approach motivation despite negative affective valence. Journal of Personality and Social Psychology, 74, 1310–1316. doi:10.1037/0022-3514.74.5.1310
Harmon-Jones, E., & Sigelman, J. (2001). State anger and prefrontal brain activity: Evidence that insult-related relative left-prefrontal activation is associated with experienced anger and aggression. Journal of Personality and Social Psychology, 80, 797–803.
Hinrichs, H., & Machleidt, W. (1992). Basic emotions reflected in EEG-coherences. International Journal of Psychophysiology, 13, 225–232.
Hockings, K. J., Yamakoshi, G., Kabasawa, A., & Matsuzawa, T. (2010). Attacks on local persons by chimpanzees in Bossou, Republic of Guinea: Long-term perspectives. American Journal of Primatology, 72, 887–896.
Hoptman, M. J., Volavka, J., Czobor, P., Gerig, G., Chakos, M., Blocher, J., … Bilder, R. M. (2006). Aggression and quantitative MRI measures of caudate in patients with chronic schizophrenia or schizoaffective disorder. The Journal of Neuropsychiatry and Clinical Neurosciences, 18, 509–515. doi:10.1176/appi.neuropsych.18.4.509
Ito, M., Okazaki, M., Takahashi, S., Muramastsu, R., Kato, M., & Onuma, T. (2007). Subacute postictal aggression in patients with epilepsy. Epilepsy and Behavior, 10, 611–614. doi:10.1016/j.yebeh.2007.02.016
Johnson, O., Becnel, J., & Nichols, C. D. (2009). Serotonin 5-HT2 and 5-HT1A-like receptors differentially modulate aggressive behaviors in Drosophila melanogaster. Neuroscience, 158, 1292–1300.
Juhasz, C., Behen, M. E., Muzik, O., Chugani, D. C., & Chugani, H. T. (2001). Bilateral medial prefrontal and temporal neocortical hypometabolism in children with epilepsy and aggression. Epilepsia, 42, 991–1001. doi:10.1046/j.1528-1157.2001.042008991.x
Kahlenberg, S. M., Emery Thompson, M., & Wrangham, R. W. (2008). Female competition over core areas in Pan Troglodytes schweinfurthii, Kibale National Park, Uganda. International Journal of Primatology, 29, 931–947.
Karl, T., Lin, S., Sainsbury, A., Wittmann, W., Boey, D., von Horsten, S., & Herzog, H. (2004). Y1 receptors regulate aggressive behavior by modulating serotonin pathways. Proceedings of the National Academy of Sciences of the United States of America, 101, 12742–12747.
Keune, P. M., van der Heiden, L., Varkuti, B., Konicar, L., Veit, R., & Birbaumer, N. (2012). Prefrontal brain asymmetry and aggression in imprisoned violent offenders. Neuroscience Letters, 515, 191–195. doi:10.1016/j.neulet.2012.03.058
Knyazev, G. G., Pylkova, L. V., Sloboskoj-Plusnin, J. Y., Borcharov, A. V., & Ushakov, D. V. (2015). Personality and the neural efficiency theory. Personality and Individual Differences, 86, 67–72. doi:10.1016/j.paid.2015.06.002
Konicar, L., Veit, R., Eisenbarth, H., Barth, B., Tonin, P., Strehl, U., & Birbaumer, N. (2015). Brain self-regulation in criminal psychopaths. Scientific Reports, 5, 9426. doi:10.1038/srep09426
Kumari, V., Aasen, I., Taylor, P., Ffytche, D. H., Das, M., Barkataki, I., … Sharma, T. (2006). Neural dysfunction and violence in schizophrenia: An fMRI investigation. Schizophrenia Research, 84, 144–164. doi:10.1016/j.schres.2006.02.017
Kuruoglu, A. C., Arikan, Z., Vural, G., Karatas, M., Arac, M., & Isike, E. (1996). Single photon emission computerised tomography in chronic alcoholism. Antisocial personality disorder may be associated with decreased frontal perfusion. British Journal of Psychiatry, 169(3), 348–354.
Laakso, M. P., Vaurio, O., Koivisto, E., Savolainen, L., Eronen, M., Aronen, H. J., … Tiihonen, J. (2001). Psychopathy and the posterior hippocampus. Behavioral Brain Research, 118, 187–193. doi:10.1016/S0166-4328(00)00324-7
Lacker, C. L., Marshall, W. J., Santesso, D. L., Dywan, J., Wade, T., & Segalowitz, S. J. (2014). Adolescent anxiety and aggression can be differentially predicted by electrocortical phase reset variables. Brain and Cognition, 89, 90–98. doi:10.1016/j.bandc.2013.10.004
Lanctot, K. L., Herrmann, N., Nadkarni, N. K., Leibovitch, F. S., Caldwell, C. B., & Black, S. E. (2004). Medial temporal hypoperfusion and aggression in Alzheimer disease. Archives of Neurology, 61, 1731–1737. doi:10.1001/archneur.61.11.1731
Li, C., Wang, X., Zhang, D., Zhou, J., & Guo, M. (2015). An EEG study that may improve the violence risk assessment in male schizophrenic patients. Australian Journal of Forensic Sciences, 47, 104–115. doi:10.1080/00450618.2014.901415
Link, J., Messerly, J., Spearman, C., Driskell, L., Coad, S., Amen, D., & Golden, C. (2014). SPECT differences between those with higher and lower levels of aggression: An exploratory analysis. Archives of Clinical Neuropsychology, 29(6), 576. doi:10.1093/arclin/acu038.190
Lu, H., Wang, Y., Xu, S., Wang, Y., Zhang, R., & Li, T. (2015). Aggression differentially modulates brain responses to fearful and angry faces: An exploratory study. Neuroreport, 26, 663–669. doi:10.1097/WNR.0000000000000412
MacLean, P. D. (1955). The limbic system (‘visceral brain’) and emotional behavior. Archives of Neurology and Psychiatry, 73, 130–134. doi:10.1001/archneurpsyc.1955.02330080008004
Mao, Z., & Davis, R. L. (2009). Eight different types of dopaminergic neurons innervate the drosophila mushroom body neuropil: Anatomical and physiological heterogeneity. Frontiers in Neural Circuits, 3.
Masumi, I., Okazaki, M., Takahashi, S., & Onuma, T. (2007). Subacute postictal aggression in patients with epilepsy. Epilepsy and Behavior, 10(4), 611–614. https://doi.org/10.1016/j.yebeh.2007.02.016
Meyer, J. H., Wilson, A. A., Rusjan, P., Clark, M., Houle, S., Woodside, S., & Colleton, M. (2007). Serotonin receptor binding potential in people with aggressive and violent behavior. Journal of Psychiatry and Neuroscience, 33, 499–508.
Mychack, P., Kramer, J. H., Boone, K. B., & Miller, B. L. (2001). The influence of right frontotemporal dysfunction on social behavior in frontotemporal dementia. Neurology, 56, S11–S15. doi:10.1212/WNL.56.suppl_4.S11
New, A. S., Hazlett, E. A., Buchsbaum, M. S., Goodman, M., Mitelman, S. A., Newmark, R., … Siever, L. J. (2007). Amygdala-prefrontal disconnection in borderline personality disorder. Neuropsychopharmacology, 32, 1629–1640. doi:10.1038/sj.npp.1301283
New, A. S., Hazlett, E. A., Newmark, R. E., Zhang, J., Triebwasser, J., Meyerson, D., … Buchsbaum, M. S. (2009). Laboratory induced aggression: A positron emission tomography study of aggressive individuals with borderline personality disorder. Biological Psychiatry, 66, 1107–1114. doi:10.1016/j.biopsych.2009.07.015
Niv, S., Ashrafulia, S., Tuvblad, C., Joshi, A., Raine, A., Leahy, R., & Baker, L. A. (2015). Childhood EEG frontal alpha power as a predictor of adolescent antisocial behavior: A twin heritability study. Biological Psychology, 105, 72–76. doi:10.1016/j.biopsycho.2014.11.010
Nomura, M., Durbak, L., Chan, J., Smithies, O., Gustafsson, J. A., Korach, K. S., … Ogawa, S. (2002). Genotype/age interactions on aggressive behavior in gonadally intact estrogen receptor beta knockout (betaERKO) male mice. Hormones and Behavior, 41, 288–296.
Ogawa, S., Washburn, T. F., Taylor, J., Lubahn, D. B., Korach, K. S., & Pfaff, D. W. (1998). Modifications of testosterone-dependent behaviors by estrogen receptor-α gene disruption in male mice. Endocrinology, 139(12), 5058–5069. This work was supported by the Harry Frank Guggenheim Foundation (to SO), the University of Missouri molecular biology program (to DBL), and NIH Grant HD-05751 (to DWP).
Paus, T. (2005). Mapping brain development and aggression. The Canadian Child and Adolescent Psychiatry Review, 14, 10–15.
Penn, J. K., Zito, M. F., & Kravitz, E. A. (2010). A single social defeat reduces aggression in a highly aggressive strain of drosophila. Proceedings of the National Academy of Sciences of the United States of America, 107, 12682–12686.
Poprawski, T. J., Pluzyczka, A. N., Park, Y., Chennamchetty, V. N., Halaris, A., Crayton, J. W., & Konopka, L. M. (2007). Multimodality imaging in a depressed patient with violent behavior and temporal lobe seizures. Clinical EEG and Neuroscience, 38, 175–179. doi:10.1177/155005940703800316
Raine, A., Lencz, T., Bihrle, S., LaCasse, L., & Colletti, P. (2000). Reduced frontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Archives of General Psychiatry, 57, 119–127. doi:10.1001/archpsyc.57.2.119
Raine, A., Venables, P. H., & Williams, M. (1990). Relationship between central and autonomic measures of arousal at age 15 years and criminality at age 24 years. Archives of General Psychiatry, 47, 1003–1007. doi:10.1001/archpsyc.1990.01810230019003
Rao, V., Rosenberg, P., Bertand, M., Salehinia, S., Spiro, J., Vaishnavi, S., … Miles, Q. S. (2009). Aggression after traumatic brain injury: Prevalence and correlates. Journal of Neuropsychiatry and Clinical Neurosciences, 21, 420–429.
Rilling, J. K., Scholz, J., Preuss, T. M., Glasser, M. F., Errangi, B. K., & Behrens, T. E. (2012). Differences between chimpanzees and bonobos in neural systems supporting social cognition. Social Cognitive and Affective Neuroscience, 7, 369–379.
Rombero, M. L. (2002). Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. General and Comparative Endocrinology, 128, 1–24.
Schiltz, K., Witzel, J. G., Bausch-Hölterhoff, J., & Bogerts, B. (2013). High prevalence of brain pathology in violent prisoners: A qualitative CT and MRI scan study. European Archives of Psychiatry and Clinical Neurosciences, 263, 607–616. doi:10.1007/s00406-013-0403-6
Schluter, T., Winz, O., Henkel, K., Prinz, S., Rademacher, L., Schmaljohann, J., … Vernaleken, I. (2013). The impact of dopamine on aggression: An [18F]-FDOPA PET study in healthy males. The Journal of Neuroscience, 33, 16889–16896. doi:10.1523/JNEUROSCI.1398-13.2013
Setchel, J. M., Knapp, L. A., & Wickings, E. J. (2006). Violent coalitionary attack by female mandrills against an injured alpha male. American Journal of Primatology, 68, 411–418.
Sicotte, P. (2002). The function of male aggressive displays towards females in mountain gorillas. Primates, 43, 277–289.
Sobolewski, M. E., Brown, J. L., & Mitani, J. C. (2013). Female parity, male aggression, and the Challenge Hypothesis in wild chimpanzees. Primates, 54, 81–88.
Soloff, P., White, R., & Diwadkar, V. A. (2014). Impulsivity, aggression and brain structure in high and low lethality suicide attempters with borderline personality disorder. Psychiatry Research: Neuroimaging, 222, 131–139. doi:10.1016/j.pscychresns.2014.02.006
Soyka, M. (2011). Neurobiology of aggression and violence in schizophrenia. Schizophrenia Bulletin, 37, 913–920. doi:10.1093/schbul/sbr103
Spalletta, G., Troisi, A., Alimenti, S., Di Michele, F., Pau, F., & Pasini, A. (2001). Reduced prefrontal cognitive activation associated with aggression in schizophrenia. Schizophrenia Research, 50, 134–135. doi:10.1016/S0920-9964(00)00164-X
Steklis, H. D., Brammer, G. L., Raleigh, M. J., & McGuire, M. T. (1985). Serum testosterone, male dominance, and aggression in captive groups of vervet monkeys (Cercopithecus aethiops sabaeus). Hormones and Behavior, 19, 154–163.
Strenziok, M., Krueger, F., Heinecke, A., Lenroot, R. K., Knutson, K. M., van der Meer, E., & Grafman, J. (2011). Developmental effects of aggressive behavior in male adolescents assessed with structural and functional brain imaging. Social Cognitive and Affective Neuroscience, 6, 2–11. doi:10.1093/scan/nsp036
Tateno, A., Jorge, R. E., & Robinson, R. G. (2003). Clinical correlates of aggressive behavior after traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 15, 155–160.
Tebartz van Elst, L., Woermann, F. G., Lemieux, L., Thompson, P. J., & Trimble, M. R. (2000). Affective aggression in patients with temporal lobe epilepsy: A quantitative MRI study of the amygdala. Brain, 123, 234–243. doi:10.1093/brain/123.2.234
Vallabhajosula, B. T. (2009). Assessing frontal lobe functioning in the context of violent and aggressive behavior: A new multimodal approach (Doctoral dissertation). Retrieved from PsycINFO (3378655).
Volkow, N. D., Tancredi, L. R., Grant, C., Gillespie, H., Valentine, A., Mullani, N., … Hollister, L. (1995). Brain glucose metabolism in violent psychiatric patients: A preliminary study. Psychiatry Research, 61, 243–253. doi:10.1016/0925-4927(95)02671-J
Wahlund, K., & Kristiansson, M. (2009). Aggression, psychopathy and brain imaging—Review and future recommendations. International Journal of Law and Psychiatry, 32, 266–271. doi:10.1016/j.ijlp.2009.04.007
Walker, J. (2013). QEEG-guided neurofeedback for anger/anger control disorder. Journal of Neurotherapy: Investigation in Neuromodulation, Neurofeedback and Applied Neuroscience, 17, 88–92. doi:10.1080/10874208.2012.705767
Wang, L., & Anderson, D. J. (2010). Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila. Nature, 463, 227–231.
Witte, A. V., Floel, A., Stein, P., Savli, M., Mien, L.-K., Wadsak, W., … Lanzenberger, R. (2009). Aggression is related to frontal serotonin-I A receptor distribution as revealed by PET in healthy subjects. Human Brain Mapping, 30, 2558–2570. doi:10.1002/hbm.20687
Wrangham, R. W., Wilson, M. I., & Muller, M. N. (2012). Comparative rates of violence in chimpanzees and humans. Primates, 47, 5–29.
Yamanashi, Y., Morimura, N., Mori, Y., Hayashi, M., & Suzuki, J. (2013). Cortisol analysis of hair of captive chimpanzees (Pan troglodytes). General and Comparative Endocrinology, 194, 55–63.
Yankovsky, A. E., Veilleux, M., Dubeau, F., & Andermann, F. (2005). Post-ictal rage and aggression: A video-EEG study. Epileptic Disorders, 7, 143–147.
Yurkovic, A., Wang, O., Basu, A. C., & Kravitz, E. A. (2006). Learning and memory associated with aggression in drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 103, 17519–17524.
Zetzsche, T., Preuss, U. W., Frodl, T., Schmitt, G., Siefert, D., Munchhausen, E., … Meisenzahl, E. M. (2007). Hippocampal volume reduction and history of aggressive behavior in patients with borderline personality disorder. Psychiatry Research Neuroimaging, 154, 157–170. doi:10.1016/j.pscychresns.2006.05.010
Zhang, L., Kerich, M., Schwandt, M. L., Rawlings, R. R., McKellar, J. D., Momenan, R., … George, D. T. (2011). Smaller right amygdala in Caucasian alcohol-dependent male patients with a history of intimate partner violence: A volumetric imaging study. Addiction Biology, 18, 537–547. doi:10.1111/j.1369-1600.2011.00381.x
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Golden, C.J., Zachar, R., Lowry, B., Tran, V. (2017). Role of Neurobiological Factors. In: Van Hasselt, V., Bourke, M. (eds) Handbook of Behavioral Criminology. Springer, Cham. https://doi.org/10.1007/978-3-319-61625-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-61625-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-61623-0
Online ISBN: 978-3-319-61625-4
eBook Packages: Behavioral Science and PsychologyBehavioral Science and Psychology (R0)