Skip to main content

Role of Neurobiological Factors

  • Chapter
  • First Online:
Handbook of Behavioral Criminology
  • 3785 Accesses

Abstract

The study of the biology of aggression has always been limited by complex research issues and ethical limitations in performing human research. Early research relied on anecdotal reports in the literature and animal models. Anecdotal studies are inherently limited in their generalizability, as are animal studies which may reveal some basic mechanisms of aggression in more primitive animals but are unable to take into account those changes which occur in brain organization with the development of the more complex areas seen in human research. This research has more recently been enhanced by the introduction of neuroradiological devices which can measure the structure of the human brain (e.g., computed tomography [CT] and magnetic resonance imaging [MRI]) and the metabolic unction of the human brain (e.g., positron emission tomography [PET] and functional magnetic resonance imaging [fMRI]) in intact and live human brain, although not when they are showing violent tendencies. This chapter reviews the major trends in this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Alekseyenko, O. V., Lee, C., & Kravitz, E. A. (2010). Targeted manipulation of serotonergic neurotransmission affects the escalation of aggression in adult male Drosophila melanogaster. PLoS One, 5, 1–11.

    Article  Google Scholar 

  • Alekseyenko, O. V., Chan, Y. B., Li, R., & Kravitz, E. A. (2013). Single dopaminergic neurons that modulate aggression in drosophila. Proceedings of the National Academy of Sciences, 110(15), 6151–6156.

    Article  Google Scholar 

  • Amen, D. G., Stubblefield, M., Carmicheal, B., & Thisted, R. (1996). Brain SPECT findings and aggressiveness. Annals of Clinical Psychiatry, 8, 129–137. doi:10.3109/10401239609147750

    Article  PubMed  Google Scholar 

  • Andrews, J. C., Fernandez, M. P., Yu, Q., Leary, G. P., Leung, A. K., Kavanaugh, M. P., … Certel, S. J. (2010). Octopamine neuromodulation regulates Gr32a-linked aggression and courtship pathways in Drosophila males. PLoS Genetics, 10, 1–14.

    Google Scholar 

  • Antonucci, A. S., Gansler, D. A., Tan, S., Bhadelia, R., Patz, S., & Fulwiler, C. (2006). Orbitofrontal correlates of aggression and impulsivity in psychiatric patients. Psychiatry Research, 147, 213–220. doi:10.1016/j.pscychresns.2005.05.016

    Article  PubMed  Google Scholar 

  • Baier, A., Wittek, B., & Bremb, B. (2002). Drosophila as a new model organism for the neurobiology of aggression? The Journal of Experimental Biology, 205, 1233–1240.

    PubMed  Google Scholar 

  • Bermejo, M. (2004). Home-range use and intergroup encounters in western gorillas at Lossi forest, North Congo. American Journal of Primatology, 64, 223–232.

    Article  PubMed  Google Scholar 

  • Bolea, A. S. (2010). Neurofeedback treatment of chronic inpatient schizophrenia. Journal of Neurotherapy, 14(1), 47–54.

    Article  Google Scholar 

  • Bouwknecht, J. A., van der Gugten, J., Hijzen, T. H., Maes, R. A., Hen, R., & Olivier, B. (2001). Male and female 5-HT1B receptor knockout mice have higher body weights than wildtypes. Physiology & Behavior, 74, 507–516.

    Article  Google Scholar 

  • Bradley, B. J., Robbins, M. M., Williamson, E. A., Steklis, H. D., Steklis, N. G., Eckhardt, N., & Vigilant, L. (2005). Mountain gorilla tug-of-war: Silverbacks have limited control over reproduction in multimale groups. Proceedings of the National Academy of Sciences of the United States of America, 102, 9418–9423.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavigelli, S. A., Dubovick, T., Levash, W., Jolly, A., & Pitts, A. (2003). Female dominance status and fecal corticoids in a cooperative breeder with low reproductive skew: Ring-tailed lemurs (Lemur catta). Hormones and Behavior, 43, 166–179.

    Article  PubMed  Google Scholar 

  • Cha, J., Fekete, T., Siciliano, F., Biezonski, D., Greenhill, L., Pliszka, S. R., … Posner, J. (2015). Neural correlates of aggression in medication-naïve children with ADHD: Multivariate analysis of morphometry and tractography. Neuropsychopharmacology, 40, 1717–1725. doi:10.1038/npp.2015.18

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan, Y. B., & Kravitz, E. A. (2007). Specific subgroups of Frum neurons control sexually dimorphic patterns of aggression in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 104, 19577–19582.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coccaro, E. F., McCloskey, M. S., Fitzgerald, D. A., & Phan, K. L. (2007). Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biological Psychiatry, 62, 168–178. doi:10.1016/j.biopsych.2006.08.024

    Article  PubMed  Google Scholar 

  • Convit, A., Czobor, P., & Volavka, J. (1991). Lateralized abnormality in the EEG of persistently violent psychiatric inpatients. Biological Psychiatry, 30, 363–370. doi:10.1016/0006-3223(91)90292-T

    Article  PubMed  Google Scholar 

  • Cunha-Bang, S. D., McMahon, B., Fischer, P. M., Jensen, P. S., Svarer, C., & Knudsen, G. M. (2016). High trait aggression in men associated with low 5-HT levels, as indexed by 5-HT4 receptor binding. Social Cognitive and Affective Neuroscience, 11, 548–555. doi:10.1093/scan/nsv140

    Article  PubMed  PubMed Central  Google Scholar 

  • Davidson, R. J., Putnam, K. M., & Larson, C. L. (2000). Dysfunction in the neural circuitry of emotion regulation—A possible prelude to violence. Science, 289, 591–594. doi:10.1126/science.289.5479.591

    Article  PubMed  Google Scholar 

  • de Almeida, R. M., & Miczek, K. A. (2002). Aggression escalated by social instigation or by discontinuation of reinforcement (“frustration”) in mice: Inhibition by anpirtoline: A 5-HT1B receptor agonist. Neuropharmacology, 27, 171–181.

    Google Scholar 

  • Deckel, A. W., Hesselbrock, V., & Bauer. (1996). Antisocial personality disorder, childhood delinquency, and frontal brain functioning: EEG and neuropsychological findings. Journal of Clinical Psychology, 52, 639–650. doi:10.1002/(SICI)1097-4679(199611)52:6<639::AID-JCLP6>3.0.CO;2-F

    Article  PubMed  Google Scholar 

  • Durbak, L., Pfaff, D., & Ogawa, S. (2002). Role of the estrogen receptor beta gene in testosterone inducible aggression in female mice. Society for Neuroscience, 288.

    Google Scholar 

  • Ellingson, R. J. (1954). The incidence of EEG abnormality among patients with mental disorders of apparently nonorganic origin: A critical review. The American Journal of Psychiatry, 111, 263–275. doi:10.1176/ajp.111.4.263

    Article  PubMed  Google Scholar 

  • Fernandez, M. P., & Kravitz, E. A. (2013). Aggression and courtship in Drosophila: Pheromonal communication and sex recognition. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural and Behavioral Physiology, 199, 1065–1076.

    Article  Google Scholar 

  • Ferrari, P. F., Palanza, P., Rodgers, R. J., Mainardi, M., & Parmigiani, S. (1996). Comparing different forms of male and female aggression in wild and laboratory mice: An ethopharmacological study. Physiology & Behavior, 60, 549–553.

    Article  Google Scholar 

  • Fish, E. W., DeBold, J. F., & Miczek, K. A. (2005). Escalated aggression as a reward: Corticosterone and GABAA receptor positive modulators in mice. Psychopharmacology, 182, 116–127.

    Article  PubMed  Google Scholar 

  • Gatzke-Kopp, L. M., Jetha, M. K., & Segalowitz, S. J. (2014). The role of resting frontal EEG asymmetry in psychopathology: Afferent or efferent filter? Developmental Psychobiology, 56, 73–85. doi:10.1002/dev.21092

    Article  PubMed  Google Scholar 

  • Gourley, S. L., DeBold, J. F., Yin, W., Cook, J., & Miczek, K. A. (2004). Benzodiazepines and heightened aggressive behavior in rats: Reduction by GABAA1 receptor antagonists. Psychopharmacology, 178, 232–240.

    Article  PubMed  Google Scholar 

  • Hare, B., Wobbler, V., & Wrangham, R. (2012). The self-domestication hypothesis: Evolution of bonobo psychology is due to selection against aggression. Animal Behaviour, 83, 573–585.

    Article  Google Scholar 

  • Harmon-Jones, E., & Allen, J. B. (1998). Anger and frontal brain activity: EEG asymmetry consistent with approach motivation despite negative affective valence. Journal of Personality and Social Psychology, 74, 1310–1316. doi:10.1037/0022-3514.74.5.1310

    Article  PubMed  Google Scholar 

  • Harmon-Jones, E., & Sigelman, J. (2001). State anger and prefrontal brain activity: Evidence that insult-related relative left-prefrontal activation is associated with experienced anger and aggression. Journal of Personality and Social Psychology, 80, 797–803.

    Article  PubMed  Google Scholar 

  • Hinrichs, H., & Machleidt, W. (1992). Basic emotions reflected in EEG-coherences. International Journal of Psychophysiology, 13, 225–232.

    Article  PubMed  Google Scholar 

  • Hockings, K. J., Yamakoshi, G., Kabasawa, A., & Matsuzawa, T. (2010). Attacks on local persons by chimpanzees in Bossou, Republic of Guinea: Long-term perspectives. American Journal of Primatology, 72, 887–896.

    Article  PubMed  Google Scholar 

  • Hoptman, M. J., Volavka, J., Czobor, P., Gerig, G., Chakos, M., Blocher, J., … Bilder, R. M. (2006). Aggression and quantitative MRI measures of caudate in patients with chronic schizophrenia or schizoaffective disorder. The Journal of Neuropsychiatry and Clinical Neurosciences, 18, 509–515. doi:10.1176/appi.neuropsych.18.4.509

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito, M., Okazaki, M., Takahashi, S., Muramastsu, R., Kato, M., & Onuma, T. (2007). Subacute postictal aggression in patients with epilepsy. Epilepsy and Behavior, 10, 611–614. doi:10.1016/j.yebeh.2007.02.016

    Article  PubMed  Google Scholar 

  • Johnson, O., Becnel, J., & Nichols, C. D. (2009). Serotonin 5-HT2 and 5-HT1A-like receptors differentially modulate aggressive behaviors in Drosophila melanogaster. Neuroscience, 158, 1292–1300.

    Article  PubMed  Google Scholar 

  • Juhasz, C., Behen, M. E., Muzik, O., Chugani, D. C., & Chugani, H. T. (2001). Bilateral medial prefrontal and temporal neocortical hypometabolism in children with epilepsy and aggression. Epilepsia, 42, 991–1001. doi:10.1046/j.1528-1157.2001.042008991.x

    Article  PubMed  Google Scholar 

  • Kahlenberg, S. M., Emery Thompson, M., & Wrangham, R. W. (2008). Female competition over core areas in Pan Troglodytes schweinfurthii, Kibale National Park, Uganda. International Journal of Primatology, 29, 931–947.

    Article  Google Scholar 

  • Karl, T., Lin, S., Sainsbury, A., Wittmann, W., Boey, D., von Horsten, S., & Herzog, H. (2004). Y1 receptors regulate aggressive behavior by modulating serotonin pathways. Proceedings of the National Academy of Sciences of the United States of America, 101, 12742–12747.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keune, P. M., van der Heiden, L., Varkuti, B., Konicar, L., Veit, R., & Birbaumer, N. (2012). Prefrontal brain asymmetry and aggression in imprisoned violent offenders. Neuroscience Letters, 515, 191–195. doi:10.1016/j.neulet.2012.03.058

    Article  PubMed  Google Scholar 

  • Knyazev, G. G., Pylkova, L. V., Sloboskoj-Plusnin, J. Y., Borcharov, A. V., & Ushakov, D. V. (2015). Personality and the neural efficiency theory. Personality and Individual Differences, 86, 67–72. doi:10.1016/j.paid.2015.06.002

    Article  Google Scholar 

  • Konicar, L., Veit, R., Eisenbarth, H., Barth, B., Tonin, P., Strehl, U., & Birbaumer, N. (2015). Brain self-regulation in criminal psychopaths. Scientific Reports, 5, 9426. doi:10.1038/srep09426

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari, V., Aasen, I., Taylor, P., Ffytche, D. H., Das, M., Barkataki, I., … Sharma, T. (2006). Neural dysfunction and violence in schizophrenia: An fMRI investigation. Schizophrenia Research, 84, 144–164. doi:10.1016/j.schres.2006.02.017

    Article  PubMed  Google Scholar 

  • Kuruoglu, A. C., Arikan, Z., Vural, G., Karatas, M., Arac, M., & Isike, E. (1996). Single photon emission computerised tomography in chronic alcoholism. Antisocial personality disorder may be associated with decreased frontal perfusion. British Journal of Psychiatry, 169(3), 348–354.

    Article  PubMed  Google Scholar 

  • Laakso, M. P., Vaurio, O., Koivisto, E., Savolainen, L., Eronen, M., Aronen, H. J., … Tiihonen, J. (2001). Psychopathy and the posterior hippocampus. Behavioral Brain Research, 118, 187–193. doi:10.1016/S0166-4328(00)00324-7

    Article  Google Scholar 

  • Lacker, C. L., Marshall, W. J., Santesso, D. L., Dywan, J., Wade, T., & Segalowitz, S. J. (2014). Adolescent anxiety and aggression can be differentially predicted by electrocortical phase reset variables. Brain and Cognition, 89, 90–98. doi:10.1016/j.bandc.2013.10.004

    Article  Google Scholar 

  • Lanctot, K. L., Herrmann, N., Nadkarni, N. K., Leibovitch, F. S., Caldwell, C. B., & Black, S. E. (2004). Medial temporal hypoperfusion and aggression in Alzheimer disease. Archives of Neurology, 61, 1731–1737. doi:10.1001/archneur.61.11.1731

    Article  PubMed  Google Scholar 

  • Li, C., Wang, X., Zhang, D., Zhou, J., & Guo, M. (2015). An EEG study that may improve the violence risk assessment in male schizophrenic patients. Australian Journal of Forensic Sciences, 47, 104–115. doi:10.1080/00450618.2014.901415

    Article  Google Scholar 

  • Link, J., Messerly, J., Spearman, C., Driskell, L., Coad, S., Amen, D., & Golden, C. (2014). SPECT differences between those with higher and lower levels of aggression: An exploratory analysis. Archives of Clinical Neuropsychology, 29(6), 576. doi:10.1093/arclin/acu038.190

    Article  Google Scholar 

  • Lu, H., Wang, Y., Xu, S., Wang, Y., Zhang, R., & Li, T. (2015). Aggression differentially modulates brain responses to fearful and angry faces: An exploratory study. Neuroreport, 26, 663–669. doi:10.1097/WNR.0000000000000412

    Article  PubMed  Google Scholar 

  • MacLean, P. D. (1955). The limbic system (‘visceral brain’) and emotional behavior. Archives of Neurology and Psychiatry, 73, 130–134. doi:10.1001/archneurpsyc.1955.02330080008004

    Article  PubMed  Google Scholar 

  • Mao, Z., & Davis, R. L. (2009). Eight different types of dopaminergic neurons innervate the drosophila mushroom body neuropil: Anatomical and physiological heterogeneity. Frontiers in Neural Circuits, 3.

    Google Scholar 

  • Masumi, I., Okazaki, M., Takahashi, S., & Onuma, T. (2007). Subacute postictal aggression in patients with epilepsy. Epilepsy and Behavior, 10(4), 611–614. https://doi.org/10.1016/j.yebeh.2007.02.016

    Article  Google Scholar 

  • Meyer, J. H., Wilson, A. A., Rusjan, P., Clark, M., Houle, S., Woodside, S., & Colleton, M. (2007). Serotonin receptor binding potential in people with aggressive and violent behavior. Journal of Psychiatry and Neuroscience, 33, 499–508.

    Google Scholar 

  • Mychack, P., Kramer, J. H., Boone, K. B., & Miller, B. L. (2001). The influence of right frontotemporal dysfunction on social behavior in frontotemporal dementia. Neurology, 56, S11–S15. doi:10.1212/WNL.56.suppl_4.S11

    Article  PubMed  Google Scholar 

  • New, A. S., Hazlett, E. A., Buchsbaum, M. S., Goodman, M., Mitelman, S. A., Newmark, R., … Siever, L. J. (2007). Amygdala-prefrontal disconnection in borderline personality disorder. Neuropsychopharmacology, 32, 1629–1640. doi:10.1038/sj.npp.1301283

    Article  PubMed  Google Scholar 

  • New, A. S., Hazlett, E. A., Newmark, R. E., Zhang, J., Triebwasser, J., Meyerson, D., … Buchsbaum, M. S. (2009). Laboratory induced aggression: A positron emission tomography study of aggressive individuals with borderline personality disorder. Biological Psychiatry, 66, 1107–1114. doi:10.1016/j.biopsych.2009.07.015

    Article  PubMed  PubMed Central  Google Scholar 

  • Niv, S., Ashrafulia, S., Tuvblad, C., Joshi, A., Raine, A., Leahy, R., & Baker, L. A. (2015). Childhood EEG frontal alpha power as a predictor of adolescent antisocial behavior: A twin heritability study. Biological Psychology, 105, 72–76. doi:10.1016/j.biopsycho.2014.11.010

    Article  PubMed  Google Scholar 

  • Nomura, M., Durbak, L., Chan, J., Smithies, O., Gustafsson, J. A., Korach, K. S., … Ogawa, S. (2002). Genotype/age interactions on aggressive behavior in gonadally intact estrogen receptor beta knockout (betaERKO) male mice. Hormones and Behavior, 41, 288–296.

    Article  PubMed  Google Scholar 

  • Ogawa, S., Washburn, T. F., Taylor, J., Lubahn, D. B., Korach, K. S., & Pfaff, D. W. (1998). Modifications of testosterone-dependent behaviors by estrogen receptor-α gene disruption in male mice. Endocrinology, 139(12), 5058–5069. This work was supported by the Harry Frank Guggenheim Foundation (to SO), the University of Missouri molecular biology program (to DBL), and NIH Grant HD-05751 (to DWP).

    Article  PubMed  Google Scholar 

  • Paus, T. (2005). Mapping brain development and aggression. The Canadian Child and Adolescent Psychiatry Review, 14, 10–15.

    PubMed  PubMed Central  Google Scholar 

  • Penn, J. K., Zito, M. F., & Kravitz, E. A. (2010). A single social defeat reduces aggression in a highly aggressive strain of drosophila. Proceedings of the National Academy of Sciences of the United States of America, 107, 12682–12686.

    Article  PubMed  PubMed Central  Google Scholar 

  • Poprawski, T. J., Pluzyczka, A. N., Park, Y., Chennamchetty, V. N., Halaris, A., Crayton, J. W., & Konopka, L. M. (2007). Multimodality imaging in a depressed patient with violent behavior and temporal lobe seizures. Clinical EEG and Neuroscience, 38, 175–179. doi:10.1177/155005940703800316

    Article  PubMed  Google Scholar 

  • Raine, A., Lencz, T., Bihrle, S., LaCasse, L., & Colletti, P. (2000). Reduced frontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Archives of General Psychiatry, 57, 119–127. doi:10.1001/archpsyc.57.2.119

    Article  PubMed  Google Scholar 

  • Raine, A., Venables, P. H., & Williams, M. (1990). Relationship between central and autonomic measures of arousal at age 15 years and criminality at age 24 years. Archives of General Psychiatry, 47, 1003–1007. doi:10.1001/archpsyc.1990.01810230019003

    Article  PubMed  Google Scholar 

  • Rao, V., Rosenberg, P., Bertand, M., Salehinia, S., Spiro, J., Vaishnavi, S., … Miles, Q. S. (2009). Aggression after traumatic brain injury: Prevalence and correlates. Journal of Neuropsychiatry and Clinical Neurosciences, 21, 420–429.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rilling, J. K., Scholz, J., Preuss, T. M., Glasser, M. F., Errangi, B. K., & Behrens, T. E. (2012). Differences between chimpanzees and bonobos in neural systems supporting social cognition. Social Cognitive and Affective Neuroscience, 7, 369–379.

    Article  PubMed  Google Scholar 

  • Rombero, M. L. (2002). Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. General and Comparative Endocrinology, 128, 1–24.

    Article  Google Scholar 

  • Schiltz, K., Witzel, J. G., Bausch-Hölterhoff, J., & Bogerts, B. (2013). High prevalence of brain pathology in violent prisoners: A qualitative CT and MRI scan study. European Archives of Psychiatry and Clinical Neurosciences, 263, 607–616. doi:10.1007/s00406-013-0403-6

    Article  Google Scholar 

  • Schluter, T., Winz, O., Henkel, K., Prinz, S., Rademacher, L., Schmaljohann, J., … Vernaleken, I. (2013). The impact of dopamine on aggression: An [18F]-FDOPA PET study in healthy males. The Journal of Neuroscience, 33, 16889–16896. doi:10.1523/JNEUROSCI.1398-13.2013

    Article  PubMed  Google Scholar 

  • Setchel, J. M., Knapp, L. A., & Wickings, E. J. (2006). Violent coalitionary attack by female mandrills against an injured alpha male. American Journal of Primatology, 68, 411–418.

    Article  Google Scholar 

  • Sicotte, P. (2002). The function of male aggressive displays towards females in mountain gorillas. Primates, 43, 277–289.

    Article  PubMed  Google Scholar 

  • Sobolewski, M. E., Brown, J. L., & Mitani, J. C. (2013). Female parity, male aggression, and the Challenge Hypothesis in wild chimpanzees. Primates, 54, 81–88.

    Article  PubMed  Google Scholar 

  • Soloff, P., White, R., & Diwadkar, V. A. (2014). Impulsivity, aggression and brain structure in high and low lethality suicide attempters with borderline personality disorder. Psychiatry Research: Neuroimaging, 222, 131–139. doi:10.1016/j.pscychresns.2014.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  • Soyka, M. (2011). Neurobiology of aggression and violence in schizophrenia. Schizophrenia Bulletin, 37, 913–920. doi:10.1093/schbul/sbr103

    Article  PubMed  PubMed Central  Google Scholar 

  • Spalletta, G., Troisi, A., Alimenti, S., Di Michele, F., Pau, F., & Pasini, A. (2001). Reduced prefrontal cognitive activation associated with aggression in schizophrenia. Schizophrenia Research, 50, 134–135. doi:10.1016/S0920-9964(00)00164-X

    Article  PubMed  Google Scholar 

  • Steklis, H. D., Brammer, G. L., Raleigh, M. J., & McGuire, M. T. (1985). Serum testosterone, male dominance, and aggression in captive groups of vervet monkeys (Cercopithecus aethiops sabaeus). Hormones and Behavior, 19, 154–163.

    Article  PubMed  Google Scholar 

  • Strenziok, M., Krueger, F., Heinecke, A., Lenroot, R. K., Knutson, K. M., van der Meer, E., & Grafman, J. (2011). Developmental effects of aggressive behavior in male adolescents assessed with structural and functional brain imaging. Social Cognitive and Affective Neuroscience, 6, 2–11. doi:10.1093/scan/nsp036

    Article  PubMed  Google Scholar 

  • Tateno, A., Jorge, R. E., & Robinson, R. G. (2003). Clinical correlates of aggressive behavior after traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 15, 155–160.

    Article  PubMed  Google Scholar 

  • Tebartz van Elst, L., Woermann, F. G., Lemieux, L., Thompson, P. J., & Trimble, M. R. (2000). Affective aggression in patients with temporal lobe epilepsy: A quantitative MRI study of the amygdala. Brain, 123, 234–243. doi:10.1093/brain/123.2.234

    Article  Google Scholar 

  • Vallabhajosula, B. T. (2009). Assessing frontal lobe functioning in the context of violent and aggressive behavior: A new multimodal approach (Doctoral dissertation). Retrieved from PsycINFO (3378655).

    Google Scholar 

  • Volkow, N. D., Tancredi, L. R., Grant, C., Gillespie, H., Valentine, A., Mullani, N., … Hollister, L. (1995). Brain glucose metabolism in violent psychiatric patients: A preliminary study. Psychiatry Research, 61, 243–253. doi:10.1016/0925-4927(95)02671-J

    Article  PubMed  Google Scholar 

  • Wahlund, K., & Kristiansson, M. (2009). Aggression, psychopathy and brain imaging—Review and future recommendations. International Journal of Law and Psychiatry, 32, 266–271. doi:10.1016/j.ijlp.2009.04.007

    Article  PubMed  Google Scholar 

  • Walker, J. (2013). QEEG-guided neurofeedback for anger/anger control disorder. Journal of Neurotherapy: Investigation in Neuromodulation, Neurofeedback and Applied Neuroscience, 17, 88–92. doi:10.1080/10874208.2012.705767

    Article  Google Scholar 

  • Wang, L., & Anderson, D. J. (2010). Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila. Nature, 463, 227–231.

    Article  PubMed  Google Scholar 

  • Witte, A. V., Floel, A., Stein, P., Savli, M., Mien, L.-K., Wadsak, W., … Lanzenberger, R. (2009). Aggression is related to frontal serotonin-I A receptor distribution as revealed by PET in healthy subjects. Human Brain Mapping, 30, 2558–2570. doi:10.1002/hbm.20687

    Article  PubMed  Google Scholar 

  • Wrangham, R. W., Wilson, M. I., & Muller, M. N. (2012). Comparative rates of violence in chimpanzees and humans. Primates, 47, 5–29.

    Google Scholar 

  • Yamanashi, Y., Morimura, N., Mori, Y., Hayashi, M., & Suzuki, J. (2013). Cortisol analysis of hair of captive chimpanzees (Pan troglodytes). General and Comparative Endocrinology, 194, 55–63.

    Article  PubMed  Google Scholar 

  • Yankovsky, A. E., Veilleux, M., Dubeau, F., & Andermann, F. (2005). Post-ictal rage and aggression: A video-EEG study. Epileptic Disorders, 7, 143–147.

    PubMed  Google Scholar 

  • Yurkovic, A., Wang, O., Basu, A. C., & Kravitz, E. A. (2006). Learning and memory associated with aggression in drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 103, 17519–17524.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zetzsche, T., Preuss, U. W., Frodl, T., Schmitt, G., Siefert, D., Munchhausen, E., … Meisenzahl, E. M. (2007). Hippocampal volume reduction and history of aggressive behavior in patients with borderline personality disorder. Psychiatry Research Neuroimaging, 154, 157–170. doi:10.1016/j.pscychresns.2006.05.010

    Article  PubMed  Google Scholar 

  • Zhang, L., Kerich, M., Schwandt, M. L., Rawlings, R. R., McKellar, J. D., Momenan, R., … George, D. T. (2011). Smaller right amygdala in Caucasian alcohol-dependent male patients with a history of intimate partner violence: A volumetric imaging study. Addiction Biology, 18, 537–547. doi:10.1111/j.1369-1600.2011.00381.x

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles J. Golden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Golden, C.J., Zachar, R., Lowry, B., Tran, V. (2017). Role of Neurobiological Factors. In: Van Hasselt, V., Bourke, M. (eds) Handbook of Behavioral Criminology. Springer, Cham. https://doi.org/10.1007/978-3-319-61625-4_3

Download citation

Publish with us

Policies and ethics