Skip to main content

Sparsity Based Nonlocal Image Restoration: An Alternating Optimization Approach

  • Chapter
  • First Online:

Abstract

There are many rich connections between the theory of mathematical optimization and the practice of image restoration. However, several fundamental questions remain open—e.g., how to translate some physical insight into an appropriate mathematical objective/cost functional? what kind of optimization tools should be called on first? The objective of this chapter is to stress the difference between the theory and the practice—namely, in the practice of image restoration, the objective is often not to solve the formulated optimization problem correctly but to obtain a nicely-restored image through the process of optimization. In other words, we advocate the termination of an iterative optimization algorithm before it reaches the convergence for various practical considerations (e.g., computational constraints, regularization purpose). Meanwhile, we will show that strategies such as relaxation and divide-and-conquer—even though they do not help the pursuit of a globally optimal solution—are often sufficient for the applications of image restoration. We will use two specific applications—namely image denoising and compressed sensing—to demonstrate how simultaneous sparse coding and nonlocal regularization both admit a nonconvex optimization-based formulation, which can lead to novel insights to our understanding why BM3D and BM3D-CS can achieve excellent performance.

This is a preview of subscription content, log in via an institution.

References

  1. Buades A, Coll B, Morel J-M (2005) A non-local algorithm for image denoising. CVPR 2:60–65

    MATH  Google Scholar 

  2. Foi A, Katkovnik V, Egiazarian K (2007) Pointwise shape-adaptive dct for high-quality denoising and deblocking of grayscale and color images. IEEE Trans Image Process 16:1395–1411

    Article  MathSciNet  Google Scholar 

  3. Dong W, Li X, Zhang L, Shi G (2011) Sparsity-based image denoising via dictionary learning and structural clustering. IEEE conference on computer vision and pattern recognition, pp 457–464

    Google Scholar 

  4. Rudin L, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D 60:259–268

    Article  MathSciNet  MATH  Google Scholar 

  5. El-Fallah AI, Ford GE (1997) Mean curvature evolution and surface area scaling in image filtering. IEEE Trans Image Process 6:750–753

    Article  Google Scholar 

  6. Biemond J, Lagendijk R, Mersereau R (1990) Iterative methods for image deblurring. Proc IEEE 78(5):856–883

    Article  Google Scholar 

  7. Bertsekas DP (2014) Constrained optimization and Lagrange multiplier methods. Academic Press, Boston

    MATH  Google Scholar 

  8. Tikhonov A, Arsenin V (1977) Solutions of Ill-posed Problems. Wiley, New York

    MATH  Google Scholar 

  9. Chan T, Vese L (2001) Active contours without edges 10:266–277

    Google Scholar 

  10. Chan TF, Shen J (2001) Nontexture inpainting by curvature-driven diffusions. J Vis Comm Image Rep 12(4):436–449

    Article  Google Scholar 

  11. Aubert G, Vese L (1997) A variational method in image recovery. SIAM J Numer Anal 34(5): 1948–1979

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang Y, Yang J, Yin W, Zhang Y (2008) A new alternating minimization algorithm for total variation image reconstruction. SIAM J Imag Sci 1(3): 248–272

    Article  MathSciNet  MATH  Google Scholar 

  13. Beck A, Teboulle M (2009) Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing 18(11):2419–2434

    Article  MathSciNet  MATH  Google Scholar 

  14. Chambolle A (2004) An algorithm for total variation minimization and applications. J Math Imaging Vis 20(1):89–97

    MathSciNet  MATH  Google Scholar 

  15. Perona P, Malik J (1990) Scale space and edge detection using anisotropic diffusion. IEEE transactions on pattern analysis and machine intelligence 12(7): 629–639

    Article  Google Scholar 

  16. Sapiro G (2001) Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  17. Candès EJ, Romberg JK, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52(2):489–509

    Article  MathSciNet  MATH  Google Scholar 

  18. Boyd SP, Vandenberghe L (2004) Convex optimization. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  19. Zibulevsky M, Elad M (2010) L1-L2 optimization in signal and image processing. IEEE Signal Processing Magazine 27:76–88

    Article  Google Scholar 

  20. Yang A, Sastry S, Ganesh A, Ma Y (2010) Fast l1-minimization algorithms and an application in robust face recognition: A review. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp 1849–1852

    Google Scholar 

  21. Goldstein T, Osher S (2009) The split Bregman method for L1 regularized problems. SIAM J Imag Sci 2(2):323–343

    Article  MathSciNet  MATH  Google Scholar 

  22. Blake A, Zisserman A (1987) Visual reconstruction. Cambridge, MA, USA: MIT Press

    Google Scholar 

  23. Chartrand R (2007) Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Processing Letters 14:707–710

    Article  Google Scholar 

  24. Trzasko J, Manduca A (2009) Highly Undersampled Magnetic Resonance Image Reconstruction via Homotopic l_{0}-Minimization. IEEE Transactions on Medical Imaging 28(1):106–121

    Article  Google Scholar 

  25. Wiener N (1949) Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications. J Am Stat Assoc 47:258

    MATH  Google Scholar 

  26. Srivastava A, Lee A, Simoncelli E, Zhu S (2003) On advances in statistical modeling of natural images. J Math Imaging Vis 18:17–33

    Article  MathSciNet  MATH  Google Scholar 

  27. Nahi N (1972) Role of recursive estimation in statistical image enhancement Proc IEEE 60(7):872–877

    Article  Google Scholar 

  28. Lev A, Zucker SW, Rosenfeld A (1977) Iterative enhancemnent of noisy images. IEEE Transactions on Systems, Man, and Cybernetics 7(6):435–442

    Article  Google Scholar 

  29. Lee J-S (1980) Digital image enhancement and noise filtering by use of local statistics. IEEE transactions on pattern analysis and machine intelligence 2: 165–168

    Article  Google Scholar 

  30. Carlson CR, Adelson EH, Anderson CH et al (1985) Improved system for coring an image-representing signal. WO Patent 1,985,002,081

    Google Scholar 

  31. Carlson CR, Adelson EH, Anderson CH (1985) System for coring an image-representing signal. US Patent 4,523,230

    Google Scholar 

  32. Donoho D, Johnstone I (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81: 425–455

    Article  MathSciNet  MATH  Google Scholar 

  33. Simoncelli EP, Adelson EH (1996) Noise removal via bayesian wavelet coring. In: IEEE international conference on image processing, pp 379–382

    Google Scholar 

  34. Kozintsev I, Mihcak MK, Ramchandran K (1999) Local statistical modeling of wavelet image coefficients and its application to denoising. In: IEEE international conference on acoustics, speech, and signal processing, pp 3253–3256

    Google Scholar 

  35. Li X, Orchard M (2000) Spatially adaptive image denoising under overcomplete expansion. In: IEEE international conference on image processing, pp 300–303

    Google Scholar 

  36. Chang S, Yu B, Vetterli M (2000) Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Transactions on Image Processing 9(9):1522–1531

    Article  MathSciNet  MATH  Google Scholar 

  37. Portilla J, Strela V, Wainwright M, Simoncelli E (2003) Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans Image Process 12:1338–1351

    Article  MathSciNet  MATH  Google Scholar 

  38. Andrews DF, Mallows CL (1974) Scale mixtures of normal distributions J R Stat Soc Ser B (Methodological) 36(1):99–102

    MathSciNet  MATH  Google Scholar 

  39. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans Image Process 16:2080–2095

    Article  MathSciNet  Google Scholar 

  40. Dabov K, Foi A, Katkovnik V, Egiazarian K (2006) Image denoising with block-matching and 3D filtering. In: Proc SPIE Electronic Imaging: Algorithms and Systems V, vol 6064. San Jose, CA, USA

    Google Scholar 

  41. Zhu S, Ma K-K (2000) New diamond search algorithm for fast block-matching motion estimation. IEEE Trans Image Process 9(2):287–290

    Article  Google Scholar 

  42. Daubechies I (1996) Where do wavelets come from? A personal point of view Proc IEEE 84(4):510–513

    Google Scholar 

  43. Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A (2009) Non-local sparse models for image restoration. In: 2009 IEEE 12th International Conference on Computer Vision, pp 2272–2279

    Google Scholar 

  44. Dong W, Shi G, Li X (2013) Nonlocal image restoration with bilateral variance estimation: a low-rank approach. IEEE Trans Image Process 22(2): 700–711

    Article  MathSciNet  MATH  Google Scholar 

  45. Dong W, Zhang L, Shi G, Li X (2013) Nonlocally centralized sparse representation for image restoration. IEEE Trans Image Process 22(4): 1620–1630

    Article  MathSciNet  MATH  Google Scholar 

  46. Galatsanos N, Katsaggelos A (1992) Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation. IEEE Trans Image Process 1: 322–336

    Article  Google Scholar 

  47. Lyu S, Simoncelli E (2009) Modeling multiscale subbands of photographic images with fields of gaussian scale mixtures. IEEE transactions on pattern analysis and machine intelligence 31(4):693–706

    Article  Google Scholar 

  48. Box GE, Tiao GC (2011) Bayesian inference in statistical analysis, vol 40. Wiley, New York

    MATH  Google Scholar 

  49. Candes E, Wakin M, Boyd S (2008) Enhancing sparsity by reweighted l 1 minimization. J Fourier Anal Appl 14(5):877–905

    Article  MathSciNet  MATH  Google Scholar 

  50. Dabov K, Foi A, Katkovnik V, Egiazarian K (2009) BM3D image denoising with shape-adaptive principal component analysis. Proceedings on SPARS’09, Signal Processing wiht Adaptive Sparse Structured Representations, p 6

    Google Scholar 

  51. Donoho D (2006) Compressed sensing. IEEE Transactions on Information Theory 52(4):1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  52. Daubechies I, Defrise M, De Mol C (2004) An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm Pure Appl Math 57(11):1413–1457

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang X, Burger M, Osher S (2011) A unified primal-dual algorithm framework based on bregman iteration. J Sci Comput 46(1):20–46

    Article  MathSciNet  MATH  Google Scholar 

  54. Lin Z, Chen M, Ma Y (2009) The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. Coordinated Science Laboratory Report no. UILU-ENG-09-2215

    Google Scholar 

  55. Rose K, Gurewwitz E, Fox G (1990) A deterministic annealing approach to clustering. Pattern Recogn Lett 11(9):589–594

    Article  MATH  Google Scholar 

  56. Rose K (1998) Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proc IEEE 86: 2210–2239

    Article  Google Scholar 

  57. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE transactions on pattern analysis and machine intelligence 6:721–741

    Article  MATH  Google Scholar 

  58. Venkatakrishnan SV, CA Bouman, Wohlberg B (2013) Plug-and-play priors for model based reconstruction. In: IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp 945–948

    Google Scholar 

  59. Egiazarian K, Foi A, Katkovnik V (2007) Compressed sensing image reconstruction via recursive spatially adaptive filtering. In: IEEE international conference on image processing, vol 1, San Antonio, TX, USA

    Google Scholar 

  60. Candes E, Plan Y (2010) Matrix completion with noise. Proc IEEE 98(6):925–936

    Article  Google Scholar 

  61. Cai J, Candes E, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20:1956

    Article  MathSciNet  MATH  Google Scholar 

  62. Candes E, Li X, Ma Y, Wright J (2011) Robust principal component analysis. J ACM 58(3):11

    Article  MathSciNet  MATH  Google Scholar 

  63. Dong W, Li X, Shi G, Ma Y, Huang F (2014) Compressive sensing via nonlocal low-rank regularization. IEEE Trans Image Process 23(8):3618–3632

    Article  MathSciNet  MATH  Google Scholar 

  64. Fazel M, Hindi H, Boyd SP (2003) Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices. In: IEEE Proceedings on the American Control Conference 3:2156–2162

    Google Scholar 

  65. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3(1):1–122

    Article  MATH  Google Scholar 

  66. Lustig M, Donoho D, Pauly J (2007) Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Li, X., Dong, W., Shi, G. (2018). Sparsity Based Nonlocal Image Restoration: An Alternating Optimization Approach. In: Monga, V. (eds) Handbook of Convex Optimization Methods in Imaging Science. Springer, Cham. https://doi.org/10.1007/978-3-319-61609-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61609-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61608-7

  • Online ISBN: 978-3-319-61609-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics