Skip to main content

Computational Spectral and Ultrafast Imaging via Convex Optimization

  • Chapter
  • First Online:

Abstract

Multidimensional optical imaging, that is, capturing light in more than two-dimensions (unlike conventional photography), has been an emerging field with widespread applications in diverse domains. Due to the intrinsic limitation of two-dimensional detectors in capturing inherently higher-dimensional data, multidimensional imaging techniques conventionally rely on a scanning process, which renders them inefficient in terms of light throughput and unsuitable for dynamic scenes. In this chapter, we present recent multidimensional imaging techniques for spectral and temporal imaging, which overcome the temporal, spectral, and spatial resolution limitations of conventional scanning-based systems. Each development is based on the computational imaging paradigm, which involves distributing the imaging task between a physical and a computational system and then digitally forming the image datacube of interest from multiplexed measurements by means of solving an inverse problem via convex optimization techniques.

This is a preview of subscription content, log in via an institution.

References

  1. Gao L, Wang LV (2016) A review of snapshot multidimensional optical imaging: Measuring photon tags in parallel. Physics Reports 616:1–37

    Article  MathSciNet  Google Scholar 

  2. Groetsch CW (1993) Inverse Problems in the Mathematical Sciences. Vieweg

    Google Scholar 

  3. Kamalabadi F (2010) Multidimensional image reconstruction in astronomy. IEEE Signal Process Mag 27(1):86–96

    Article  Google Scholar 

  4. Tikhonov A-IN, Arsenin VY (1977) Solutions of Ill-Posed Problems. Winston, Washington, DC

    MATH  Google Scholar 

  5. Hanke M, Engl HW, Neubauer A (1996) Regularization of Inverse Problems. Kluwer, Dordrecht

    MATH  Google Scholar 

  6. Bertero M, Bocacci P (1998) Introduction to Inverse Problems in Imaging. IOP Publishing, Bristol

    Book  Google Scholar 

  7. Kaipio J, Somersalo E (2005) Statistical and Computational Inverse Problems. Springer, New York

    MATH  Google Scholar 

  8. Hansen PC (2010) Discrete Inverse Problems: Insight and Algorithms 7. SIAM

    Google Scholar 

  9. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell PAMI-6(6):721–741

    Article  MATH  Google Scholar 

  10. Tikhonov AN (1963) Solution of incorrectly formulated problems and the regularization method. Soviet Mathematics 4:1035–1038

    MATH  Google Scholar 

  11. Karl WC (2000) Handbook of Image and Video Processing, Regularization in Image Restoration and Reconstruction. Plenum Press

    Google Scholar 

  12. Vogel CR (2002) Computational Methods for Inverse Problems. SIAM

    Google Scholar 

  13. Beck A, Teboulle M (2009) Gradient-based algorithms with applications to signal recovery. Convex Optimization in Signal Processing and Communications, pp 42–88

    Google Scholar 

  14. Tropp JA, Wright SJ (2010) Computational methods for sparse solution of linear inverse problems. Proc IEEE 98(6):948–958

    Article  Google Scholar 

  15. Geman D, Yang C (1995) Nonlinear image recovery with half-quadratic regularization. IEEE Trans Image Process 4(7):932–946

    Article  Google Scholar 

  16. Zibulevsky M, Elad M (2010) L1-L2 optimization in signal and image processing. IEEE Signal Process Mag 27(3):76–88

    Google Scholar 

  17. Bioucas-Dias JM, Figueiredo MA (2007) A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans Image Process 16(12):2992–3004

    Article  MathSciNet  Google Scholar 

  18. Figueiredo MA, Nowak RD, Wright SJ (2007) Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J Sel Top Signal Process 1(4):586–597

    Article  Google Scholar 

  19. Kim SJ, Koh K, Lustig M, Boyd S, Gorinevsky D (2007) An interior-point method for large-scale l 1-regularized least squares. IEEE J Sel Top Signal Process 1(4):606–617

    Article  Google Scholar 

  20. Candes E, Romberg J (2005) l1-magic: Recovery of sparse signals via convex programming. Tech Rep, California Inst Technol, Pasadena, CA

    Google Scholar 

  21. Efron B, Hastie T, Johnstone I, Tibshirani R et al (2004) Least angle regression. Ann Statist 32(2):407–499

    Article  MathSciNet  MATH  Google Scholar 

  22. Osborne MR, Presnell B, Turlach BA (2000) A new approach to variable selection in least squares problems. IMA J Numer Anal 20(3):389–403

    Article  MathSciNet  MATH  Google Scholar 

  23. Donoho DL, Tsaig Y (2008) Fast solution of l 1-norm minimization problems when the solution may be sparse. IEEE Trans Inf Theory 54(11): 4789–4812

    Article  MathSciNet  MATH  Google Scholar 

  24. Chartrand R (2007) Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process Lett 14(10):707–710

    Article  Google Scholar 

  25. Oktem FS, Kamalabadi F, Davila JM (2014) A parametric estimation approach to instantaneous spectral imaging. IEEE Trans Image Process 23(12):5707–5721. https://doi.org/10.1109/TIP.2014.2363903

    Article  MathSciNet  MATH  Google Scholar 

  26. Shepherd GG (2002) Spectral Imaging of the Atmosphere, vol. 82. Academic Press

    Google Scholar 

  27. Arce G, Brady D, Carin L, Arguello H, Kittle D (2014) Compressive coded aperture spectral imaging: An introduction. IEEE Signal Process Mag 31(1):105–115

    Article  Google Scholar 

  28. Willett R, Duarte M, Davenport M, Baraniuk R (2014) Sparsity and structure in hyperspectral imaging: Sensing, reconstruction, and target detection. IEEE Signal Process Mag 31(1):116–126

    Article  Google Scholar 

  29. Okamoto T, Yamaguchi I (1991) Simultaneous acquisition of spectral image information. Opt Lett 16(16):1277–1279

    Article  Google Scholar 

  30. Descour M, Dereniak E (1995) Computed-tomography imaging spectrometer: experimental calibration and reconstruction results. Appl Opt 34(22):4817–4826

    Article  Google Scholar 

  31. Gehm ME, John R, Brady DJ, Willett RM, Schulz TJ (2007) Single-shot compressive spectral imaging with a dual-disperser architecture. Opt Express 15(21):14013–14027

    Article  Google Scholar 

  32. Wagadarikar A, John R, Willett R, Brady D (2008) Single disperser design for coded aperture snapshot spectral imaging. Appl Opt 47(10):B44–B51

    Article  Google Scholar 

  33. August Y, Vachman C, Rivenson Y, Stern A (2013) Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains. Appl Opt 52(10):D46–D54

    Article  Google Scholar 

  34. Oktem FS, Kamalabadi F, Davila JM (2014) High-resolution computational spectral imaging with photon sieves. In: 2014 IEEE international conference on image processing, pp 5122–5126

    Google Scholar 

  35. Oktem FS (2014) Computational imaging and inverse techniques for high-resolution and instantaneous spectral imaging. PhD thesis, University of Illinois at Urbana-Champaign

    Google Scholar 

  36. Kankelborg CC, Thomas RJ (2001) Simultaneous imaging and spectroscopy of the solar atmosphere: advantages and challenges of a 3-order slitless spectrograph. In: Proc SPIE 4498:16–26

    Google Scholar 

  37. Ford BK, Volin CE, Murphy SM, Lynch RM, Descour MR (2001) Computed tomography-based spectral imaging for fluorescence microscopy. Biophys J 80(2):986–993

    Article  Google Scholar 

  38. Hagen N, Dereniak EL (2008) Analysis of computed tomographic imaging spectrometers. I. Spatial and spectral resolution. Appl Opt 47(28): F85–F95

    Google Scholar 

  39. Shepp LA, Vardi Y (1982) Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1(2):113–122

    Article  Google Scholar 

  40. Hagen N, Kudenov MW (2013) Review of snapshot spectral imaging technologies. Opt Eng 52(9):090901–090901

    Article  Google Scholar 

  41. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  42. Candès EJ et al (2006) Compressive sampling. In: Proceedings on the International Congress of Mathematicians vol 3, pp 1433–1452, Madrid, Spain

    Google Scholar 

  43. Baraniuk RG (2007) Compressive sensing. IEEE Signal Process Mag 24(4):118–121

    Article  MathSciNet  Google Scholar 

  44. Candès EJ, Wakin MB (2008) An introduction to compressive sampling. IEEE Signal Process Mag 25(2):21–30

    Article  Google Scholar 

  45. Romberg J (2008) Imaging via compressive sampling [introduction to compressive sampling and recovery via convex programming]. IEEE Signal Process Mag 25(2):14–20

    Article  Google Scholar 

  46. Fornasier M, Rauhut H (2011) Compressive sensing. In: Handbook of mathematical methods in imaging, pp 187–228. Springer

    Google Scholar 

  47. Eismann MT (2012) Hyperspectral remote sensing. SPIE, Bellingham

    Book  Google Scholar 

  48. Willett RM, Marcia RF, Nichols JM (2011) Compressed sensing for practical optical imaging systems: a tutorial. Opt Eng 50(7):072601–072601

    Article  Google Scholar 

  49. Sun T, Takhar D, Laska J, Duarte M, Bansal V, Baraniuk R, Kelly K (2008) Realization of confocal and hyperspectral microscopy via compressive sensing. In: APS Meeting Abstracts 1, p 36008

    Google Scholar 

  50. Sun T, Kelly K (2009) Compressive sensing hyperspectral imager. In: Computational Optical Sensing and Imaging, p CTuA5, Optical Society of America

    Google Scholar 

  51. Duarte MF, Davenport MA, Takhar D, Laska JN, Sun T, Kelly KE, Baraniuk RG et al (2008) Single-pixel imaging via compressive sampling. IEEE Signal Process Mag 25(2):83–91

    Article  Google Scholar 

  52. Wagadarikar AA, Pitsianis NP, Sun X, Brady DJ (2009) Video rate spectral imaging using a coded aperture snapshot spectral imager. Opt Express 17(8):6368–6388

    Article  Google Scholar 

  53. Kittle D, Choi K, Wagadarikar A, Brady DJ (2010) Multiframe image estimation for coded aperture snapshot spectral imagers. Appl Opt 49(36):6824

    Article  Google Scholar 

  54. Wu Y, Mirza IO, Arce GR, Prather DW (2011) Development of a digital-micromirror-device-based multishot snapshot spectral imaging system. Opt Lett 36(14):2692–2694

    Article  Google Scholar 

  55. Kipp L, Skibowski M, Johnson R, Berndt R, Adelung R, Harm S, Seemann R (2001) Sharper images by focusing soft x-rays with photon sieves. Nature 414(6860):184–188

    Article  Google Scholar 

  56. Attwood D (2000) Soft x-rays and extreme ultraviolet radiation: principles and applications. Cambridge University Press, Cambridge

    Google Scholar 

  57. Gorenstein P, Phillips JD, Reasenberg RD (2005) Refractive/diffractive telescope with very high angular resolution for X-ray astronomy. In: Proc SPIE, Optics for EUV, X-Ray, and Gamma-Ray Astronomy II, 5900:590018

    Google Scholar 

  58. Davila J (2011) High-resolution solar imaging with a photon sieve. In: SPIE Optical Engineering+ Applications, International Society for Optics and Photonics, pp 81480O–81480O

    Google Scholar 

  59. Menon R, Gil D, Barbastathis G, Smith HI (2005) Photon-sieve lithography. J Opt Soc Am A 22(2):342–345

    Article  Google Scholar 

  60. Andersen G (2010) Membrane photon sieve telescopes. Appl Opt 49:6391–6394

    Article  Google Scholar 

  61. Andersen G, Asmolova O, McHarg MG, Quiller T, Maldonado C (2016) FalconSAT-7: a membrane space solar telescope. In: Proc SPIE, Space Telescopes and Instrumentation, 9904:99041P

    Google Scholar 

  62. Zhou C, Dong X, Shi L, Wang C, Du C (2009) Experimental study of a multiwavelength photon sieve designed by random-area-divided approach. Appl Opt 48(8):1619–1623

    Article  Google Scholar 

  63. Artzner GE, Delaboudiniere JP, Song X (2003) Photon sieves as euv telescopes for solar orbiter. In: Proc SPIE 4853:159

    Google Scholar 

  64. Andersen G (2005) Large optical photon sieve. Opt Lett 30(22):2976–2978

    Article  Google Scholar 

  65. Andersen G, Tullson D (2007) Broadband antihole photon sieve telescope. Appl Opt 46(18):3706–3708

    Article  Google Scholar 

  66. Blahut RE (2004) Theory of remote image formation. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  67. Oktem FS, Davila JM, Kamalabadi F (2014) Image formation model for photon sieves. In: 2013 IEEE International Conference on Image Processing (ICIP), IEEE, pp 2373–2377

    Google Scholar 

  68. Goodman JW (2005) Introduction to Fourier Optics, 3rd edn. Roberts, Englewood, Colorado

    Google Scholar 

  69. Vogel CR, Oman ME (1998) Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Trans Image Process 7(6):813–824

    Article  MathSciNet  MATH  Google Scholar 

  70. Lemen JR, Title AM, Akin DJ, Boerner PF, Chou C, Drake JF, Duncan DW, Edwards CG, Friedlaender FM, Heyman GF et al (2011) The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Physics, pp 1–24

    Google Scholar 

  71. Reddy D, Veeraraghavan A, Chellappa R (2011) P2c2: Programmable pixel compressive camera for high speed imaging. In: IEEE conference on computer vision and pattern recognition, IEEE, pp 329–336

    Google Scholar 

  72. Gao L, Liang J, Li C, Wang LV (2014) Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature 516(7529):74–77

    Article  Google Scholar 

  73. Llull P, Liao X, Yuan X, Yang J, Kittle D, Carin L, Sapiro G, Brady DJ (2013) Coded aperture compressive temporal imaging. Opt Express 21(9):10526–10545

    Article  Google Scholar 

  74. Fernandez-Cull C, Tyrrell BM, D’Onofrio R, Bolstad A, Lin J, Little JW, Blackwell M, Renzi M, Kelly M (2014) Smart pixel imaging with computational-imaging arrays. In: SPIE Defense+ Security, International Society for Optics and Photonics, pp 90703D–90703D

    Google Scholar 

  75. Shepard RH, Fernandez-Cull C, Raskar R, Shi B, Barsi C, Zhao H (2014) Optical design and characterization of an advanced computational imaging system. In: SPIE Optical Engineering+ Applications, International Society for Optics and Photonics, pp 92160A–92160A

    Google Scholar 

  76. Liu D, Gu J, Hitomi Y, Gupta M, Mitsunaga T, Nayar SK (2014) Efficient space-time sampling with pixel-wise coded exposure for high-speed imaging. IEEE Trans Pattern Anal Mach Intell 36(2):248–260

    Article  Google Scholar 

  77. Holloway J, Sankaranarayanan AC, Veeraraghavan A, Tambe S (2012) Flutter shutter video camera for compressive sensing of videos. In: IEEE International Conference on Computational Photography (ICCP), IEEE, pp 1–9

    Google Scholar 

  78. Liao X, Li H, Carin L (2014) Generalized alternating projection for weighted-2,1 minimization with applications to model-based compressive sensing. SIAM J Imaging Sci 7(2):797–823

    Article  MathSciNet  MATH  Google Scholar 

  79. K.K. Hamamatsu Photonics (2013) Guides to streak cameras. https://www.hamamatsu.com

  80. Solli D, Ropers C, Koonath P, Jalali B (2007) Optical rogue waves. Nature 450(7172):1054–1057

    Article  Google Scholar 

  81. Eldar YC, Kutyniok G (2012) Compressed sensing: theory and applications. Cambridge University Press, New York

    Book  Google Scholar 

  82. Liang J, Gao L, Hai P, Li C, Wang LV (2015) Encrypted three-dimensional dynamic imaging using snapshot time-of-flight compressed ultrafast photography. Scientific Reports 5:15504

    Article  Google Scholar 

  83. Zhu L, Chen Y, Liang J, Xu Q, Gao L, Ma C, Wang LV (2016) Space-and intensity-constrained reconstruction for compressed ultrafast photography. Optica 3(7):694–697

    Article  Google Scholar 

  84. Hagen N, Kester RT, Gao L, Tkaczyk TS (2012) Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems. Opt Eng 51(11): 111702–1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Kamalabadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Oktem, F.S., Gao, L., Kamalabadi, F. (2018). Computational Spectral and Ultrafast Imaging via Convex Optimization. In: Monga, V. (eds) Handbook of Convex Optimization Methods in Imaging Science. Springer, Cham. https://doi.org/10.1007/978-3-319-61609-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61609-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61608-7

  • Online ISBN: 978-3-319-61609-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics