Skip to main content

Possibilistic MDL: A New Possibilistic Likelihood Based Score Function for Imprecise Data

  • Conference paper
  • First Online:
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2017)

Abstract

Recent years have seen a surge of interest in methods for representing and reasoning with imprecise data. In this paper, we propose a new possibilistic likelihood function handling this particular form of data based on the interpretation of a possibility distribution as a contour function of a random set. The proposed function can serve as the foundation for inferring several possibilistic models. In this paper, we apply it to define a new scoring function to learn possibilistic network structure. Experimental study showing the efficiency of the proposed score is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Used benchmarks are publicly available in: https://sites.google.com/site/karimtabiasite/mappos.

  2. 2.

    Since \(\pi \)K2 handles variables in a predefined order, so, we generate 5 orders in each experiment and we retain the best structure.

References

  1. Ben Amor, N., Benferhat, S.: Graphoid properties of qualitative possibilistic independence relations. Int. J. Uncertainty, Fuzziness Knowl.-Based Syst. 13(01), 59–96 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borgelt, C., Kruse, R.: Operations and evaluation measures for learning possibilistic graphical models. Artif. Intell. 148(1), 385–418 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees. IEEE Trans. Inf. Theory 14(3), 462–467 (1968)

    Article  MATH  Google Scholar 

  4. Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9(4), 309–347 (1992)

    MATH  Google Scholar 

  5. Couso, I., Dubois, D.: Maximum likelihood under incomplete information: toward a comparison of criteria. In: Ferraro, M.B., Giordani, P., Vantaggi, B., Gagolewski, M., Gil, M.Á., Grzegorzewski, P., Hryniewicz, O. (eds.) Soft Methods for Data Science. AISC, vol. 456, pp. 141–148. Springer, Cham (2017). doi:10.1007/978-3-319-42972-4_18

    Chapter  Google Scholar 

  6. Denoeux, T.: Maximum likelihood estimation from uncertain data in the belief function framework. IEEE Trans. knowl. data Eng. 25(1), 119–130 (2013)

    Article  Google Scholar 

  7. Dubois, D., Prade, H.: Possibility Theory. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  8. Fonck, P.: Propagating uncertainty in a directed acyclic graph. In: Proceedings of the Fourth Information Processing and Management of Uncertainty Conference, 92, 17–20 (1992)

    Google Scholar 

  9. Grünwald, P.D.: Theory and applications: advances in minimum description length, Mdl tutorial (2005)

    Google Scholar 

  10. Haddad, M., Leray, P., Amor, N.B.: Evaluating product-based possibilistic networks learning algorithms. In: Proceedings of Symbolic and Quantitative Approaches to Reasoning with Uncertainty, pp. 312–321 (2015)

    Google Scholar 

  11. Haddad, M., Leray, P., Amor, N.B.: Learning possibilistic networks from data : a survey. In: 16th World Congress of the International Fuzzy Systems Association and the 9th Conference of the European Society for Fuzzy Logic and Technology, pp. 194–201 (2015)

    Google Scholar 

  12. Haddad, M., Leray, P., Levray, A., Tabia, K.: Possibilistic networks parameter learning: Preliminary empirical comparison. In: 8èmes journées francophones de réseaux bayésiens (JFRB 2016), (2016)

    Google Scholar 

  13. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    MATH  Google Scholar 

  14. Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471 (1978)

    Article  MATH  Google Scholar 

  15. Sangüesa, R., Cabós, J., Cortes, U.: Possibilistic conditional independence: A similarity-based measure and its application to causal network learning. Int. J. Approximate Reasoning 18(1), 145–167 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Serrurier, M., Prade, H.: An informational distance for estimating the faithfulness of a possibility distribution, viewed as a family of probability distributions, with respect to data. Int. J. Approximate Reasoning 54(7), 919–933 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shafer, G.: A mathematical Theory of Evidence, vol. 1. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  18. Shapiro, L.G., Haralick, R.M.: A metric for comparing relational descriptions. IEEE Trans. Pattern Anal. Mach. Intell. 1(1), 90–94 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maroua Haddad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Haddad, M., Leray, P., Ben Amor, N. (2017). Possibilistic MDL: A New Possibilistic Likelihood Based Score Function for Imprecise Data. In: Antonucci, A., Cholvy, L., Papini, O. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2017. Lecture Notes in Computer Science(), vol 10369. Springer, Cham. https://doi.org/10.1007/978-3-319-61581-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61581-3_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61580-6

  • Online ISBN: 978-3-319-61581-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics