Advertisement

Measuring Uncertainty in Orthopairs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10369)

Abstract

In many situations information comes in bipolar form. Orthopairs are a simple tool to represent and study this kind of information, where objects are classified in three different classes: positive, negative and boundary. The scope of this work is to introduce some uncertainty measures on orthopairs. Two main cases are investigated: a single orthopair and a collection of orthopairs. Some ideas are taken from neighbouring disciplines, such as fuzzy sets, intuitionistic fuzzy sets, rough sets and possibility theory.

Keywords

Aggregation Operator Possibility Distribution Disjunctive Normal Form Formal Concept Analysis Approximation Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Belnap, N.: A useful four-valued logic. In: Dunn, M., Epstein, G. (eds.) Modern Uses of Multiple Valued Logics, pp. 8–37. D. Reidel (1977)Google Scholar
  2. 2.
    Bianucci, D., Cattaneo, G.: Information entropy and granulation co-entropy of partitions and coverings: a summary. In: Peters, J.F., Skowron, A., Wolski, M., Chakraborty, M.K., Wu, W.-Z. (eds.) Transactions on Rough Sets X. LNCS, vol. 5656, pp. 15–66. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03281-3_2 CrossRefGoogle Scholar
  3. 3.
    Ciucci, D., Yao, Y.: Special issue on three-way decisions, orthopairs and square of opposition. Int. J. Approximate Reasoning (2017). http://www.sciencedirect.com/science/journal/0888613X/vsi/10WGD1MNXV4
  4. 4.
    Ciucci, D.: Orthopairs: a simple and widely used way to model uncertainty. Fundam. Inf. 108(3–4), 287–304 (2011)MathSciNetMATHGoogle Scholar
  5. 5.
    Ciucci, D.: Orthopairs and granular computing. Granular Comput. 1, 159–170 (2016)CrossRefGoogle Scholar
  6. 6.
    Ciucci, D., Dubois, D., Lawry, J.: Borderline vs. unknown: comparing three-valued representations of imperfect information. Int. J. Approximate Reasoning 55(9), 1866–1889 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    De Luca, A., Termini, S.: A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory. Inf. Control 20(4), 301–312 (1972)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Dubois, D., Prade, H.: An introduction to bipolar representations of information and preference. Int. J. Intell. Syst. 23(3), 866–877 (2008)CrossRefMATHGoogle Scholar
  9. 9.
    Dubois, D., Prade, H.: From Blanché’s hexagonal organization of concepts to formal concept analysis and possibility theory. Log. Univers. 6, 149–169 (2012)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Guo, K.: Knowledge measure for Atanassov’s intuitionistic fuzzy sets. IEEE Trans. Fuzzy Syst. 24(5), 1072–1078 (2016)CrossRefGoogle Scholar
  11. 11.
    Klir, G.J.: Generalized information theory: aims, results, and open problems. Reliab. Eng. Syst. Saf. 85(1–3), 21–38 (2004)CrossRefGoogle Scholar
  12. 12.
    Lawry, J., Dubois, D.: A bipolar framework for combining beliefs about vague propositions. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Thirteenth International Conference, pp. 530–540. AAAI Press (2012)Google Scholar
  13. 13.
    Pal, N., Bustince, H., Pagola, M., Mukherjee, U., Goswami, D., Beliakov, G.: Uncertainties with Atanassov’s intuitionistic fuzzy sets: fuzziness and lack of knowledge. Inf. Sci. 228, 61–74 (2013)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Skowron, A., Jankowski, A., Swiniarski, R.W.: Foundations of rough sets. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 331–348. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  15. 15.
    Song, Y., Wang, X., Yu, X., Zhang, H., Lei, L.: How to measure non-specificity of intuitionistic fuzzy sets. J. Int. Fuzzy Syst. 29(5), 2087–2097 (2015)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Szmidt, E., Kacprzyk, J.: Entropy for intuitionistic fuzzy sets. Fuzzy Sets Syst. 118(3), 467–477 (2001)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Yao, Y.: An outline of a theory of three-way decisions. In: Yao, J.T., Yang, Y., Słowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS (LNAI), vol. 7413, pp. 1–17. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32115-3_1 CrossRefGoogle Scholar
  18. 18.
    Zhang, H.: Entropy for intuitionistic fuzzy sets based on distance and intuitionistic index. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 21(01), 139–155 (2013)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Zhu, P., Wen, Q.: Information-theoretic measures associated with rough set approximations. Inf. Sci. 212, 33–43 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.DISCo, University of Milano-BicoccaMilanItaly

Personalised recommendations