Measuring Uncertainty in Orthopairs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10369)

Abstract

In many situations information comes in bipolar form. Orthopairs are a simple tool to represent and study this kind of information, where objects are classified in three different classes: positive, negative and boundary. The scope of this work is to introduce some uncertainty measures on orthopairs. Two main cases are investigated: a single orthopair and a collection of orthopairs. Some ideas are taken from neighbouring disciplines, such as fuzzy sets, intuitionistic fuzzy sets, rough sets and possibility theory.

References

  1. 1.
    Belnap, N.: A useful four-valued logic. In: Dunn, M., Epstein, G. (eds.) Modern Uses of Multiple Valued Logics, pp. 8–37. D. Reidel (1977)Google Scholar
  2. 2.
    Bianucci, D., Cattaneo, G.: Information entropy and granulation co-entropy of partitions and coverings: a summary. In: Peters, J.F., Skowron, A., Wolski, M., Chakraborty, M.K., Wu, W.-Z. (eds.) Transactions on Rough Sets X. LNCS, vol. 5656, pp. 15–66. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03281-3_2 CrossRefGoogle Scholar
  3. 3.
    Ciucci, D., Yao, Y.: Special issue on three-way decisions, orthopairs and square of opposition. Int. J. Approximate Reasoning (2017). http://www.sciencedirect.com/science/journal/0888613X/vsi/10WGD1MNXV4
  4. 4.
    Ciucci, D.: Orthopairs: a simple and widely used way to model uncertainty. Fundam. Inf. 108(3–4), 287–304 (2011)MathSciNetMATHGoogle Scholar
  5. 5.
    Ciucci, D.: Orthopairs and granular computing. Granular Comput. 1, 159–170 (2016)CrossRefGoogle Scholar
  6. 6.
    Ciucci, D., Dubois, D., Lawry, J.: Borderline vs. unknown: comparing three-valued representations of imperfect information. Int. J. Approximate Reasoning 55(9), 1866–1889 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    De Luca, A., Termini, S.: A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory. Inf. Control 20(4), 301–312 (1972)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Dubois, D., Prade, H.: An introduction to bipolar representations of information and preference. Int. J. Intell. Syst. 23(3), 866–877 (2008)CrossRefMATHGoogle Scholar
  9. 9.
    Dubois, D., Prade, H.: From Blanché’s hexagonal organization of concepts to formal concept analysis and possibility theory. Log. Univers. 6, 149–169 (2012)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Guo, K.: Knowledge measure for Atanassov’s intuitionistic fuzzy sets. IEEE Trans. Fuzzy Syst. 24(5), 1072–1078 (2016)CrossRefGoogle Scholar
  11. 11.
    Klir, G.J.: Generalized information theory: aims, results, and open problems. Reliab. Eng. Syst. Saf. 85(1–3), 21–38 (2004)CrossRefGoogle Scholar
  12. 12.
    Lawry, J., Dubois, D.: A bipolar framework for combining beliefs about vague propositions. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Thirteenth International Conference, pp. 530–540. AAAI Press (2012)Google Scholar
  13. 13.
    Pal, N., Bustince, H., Pagola, M., Mukherjee, U., Goswami, D., Beliakov, G.: Uncertainties with Atanassov’s intuitionistic fuzzy sets: fuzziness and lack of knowledge. Inf. Sci. 228, 61–74 (2013)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Skowron, A., Jankowski, A., Swiniarski, R.W.: Foundations of rough sets. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 331–348. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  15. 15.
    Song, Y., Wang, X., Yu, X., Zhang, H., Lei, L.: How to measure non-specificity of intuitionistic fuzzy sets. J. Int. Fuzzy Syst. 29(5), 2087–2097 (2015)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Szmidt, E., Kacprzyk, J.: Entropy for intuitionistic fuzzy sets. Fuzzy Sets Syst. 118(3), 467–477 (2001)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Yao, Y.: An outline of a theory of three-way decisions. In: Yao, J.T., Yang, Y., Słowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS (LNAI), vol. 7413, pp. 1–17. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32115-3_1 CrossRefGoogle Scholar
  18. 18.
    Zhang, H.: Entropy for intuitionistic fuzzy sets based on distance and intuitionistic index. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 21(01), 139–155 (2013)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Zhu, P., Wen, Q.: Information-theoretic measures associated with rough set approximations. Inf. Sci. 212, 33–43 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.DISCo, University of Milano-BicoccaMilanItaly

Personalised recommendations