Abstract
We introduce a nonmonotonic procedure for preferential Description Logics in order to reason about typicality by taking probabilities of exceptions into account. We consider an extension, called \(\mathcal {ALC}+\mathbf{T}_\mathbf{R}^{ \textsf {P} }\), of the logic of typicality \(\mathcal {ALC}+\mathbf{T}_\mathbf{R}\) by inclusions of the form \(\mathbf{T}(C) \sqsubseteq _p D\), whose intuitive meaning is that “typical Cs are Ds with a probability p”. We consider a notion of extension of an ABox containing only some typicality assertions, then we equip each extension with a probability. We then restrict entailment of a query F to those extensions whose probabilities belong to a given and fixed range. We propose a decision procedure for reasoning in \(\mathcal {ALC}+\mathbf{T}_\mathbf{R}^{ \textsf {P} }\) and we exploit it to show that entailment is ExpTime-complete as for the underlying \(\mathcal {ALC}\).
G.L. Pozzato—Partially supported by the project “ExceptionOWL”, Università di Torino and Compagnia di San Paolo, call 2014 “Excellent (young) PI”, project ID: Torino_call2014_L1_111.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In Theorem 10 in [10] the authors have shown that for any consistent KB there exists a finite minimal canonical model of KB.
- 2.
As mentioned, at this point of the presentation we only want to give an intuition of inferences characterizing \(\mathcal {ALC}+\mathbf{T}_\mathbf{R}^{ \textsf {P} }\). Technical details and definitions will be provided in Definition 5.
References
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook - Theory, Implementation, and Applications, 2nd edn. Cambridge University Press, Cambridge (2007)
Baader, F., Hollunder, B.: Priorities on defaults with prerequisites, and their application in treating specificity in terminological default logic. J. Autom. Reason. 15(1), 41–68 (1995)
Bonatti, P.A., Faella, M., Petrova, I., Sauro, L.: A new semantics for overriding in description logics. Artif. Intell. 222, 1–48 (2015)
Bonatti, P.A., Lutz, C., Wolter, F.: The complexity of circumscription in DLs. J. Artif. Intell. Res. (JAIR) 35, 717–773 (2009)
Casini, G., Straccia, U.: Rational closure for defeasible description logics. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp. 77–90. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15675-5_9
Casini, G., Straccia, U.: Defeasible Inheritance-Based Description Logics. J. Artif. Intell. Res. (JAIR) 48, 415–473 (2013)
Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation as failure. ACM Trans. Comput. Logics (ToCL) 3(2), 177–225 (2002)
Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: ALC+T: a preferential extension of description logics. Fundamenta Informaticae 96, 341–372 (2009)
Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A nonmonotonic description logic for reasoning about typicality. Artif. Intell. 195, 165–202 (2013)
Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Semantic characterization of rational closure: from propositional logic to description logics. Artif. Intell. 226, 1–33 (2015)
Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artif. Intell. 55(1), 1–60 (1992)
Pozzato, G.L.: Reasoning about surprising scenarios in description logics of typicality. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037, pp. 418–432. Springer, Cham (2016). doi:10.1007/978-3-319-49130-1_31
Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Probabilistic description logics under the distribution semantics. Semant. Web 6(5), 477–501 (2015)
Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Reasoning with probabilistic ontologies. In: Proceedings of IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 4310–4316 (2015)
Sato, T.: A statistical learning method for logic programs with distribution semantics. In: Sterling, L. (ed.) Logic Programming, Proceedings of ICLP, pp. 715–729. MIT Press (1995)
Straccia, U.: Default inheritance reasoning in hybrid kl-one-style logics. In: Proceedings of IJCAI 1993, pp. 676–681. Morgan Kaufmann (1993)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Pozzato, G.L. (2017). Reasoning in Description Logics with Typicalities and Probabilities of Exceptions. In: Antonucci, A., Cholvy, L., Papini, O. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2017. Lecture Notes in Computer Science(), vol 10369. Springer, Cham. https://doi.org/10.1007/978-3-319-61581-3_37
Download citation
DOI: https://doi.org/10.1007/978-3-319-61581-3_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-61580-6
Online ISBN: 978-3-319-61581-3
eBook Packages: Computer ScienceComputer Science (R0)