Reasoning in Description Logics with Typicalities and Probabilities of Exceptions

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10369)


We introduce a nonmonotonic procedure for preferential Description Logics in order to reason about typicality by taking probabilities of exceptions into account. We consider an extension, called \(\mathcal {ALC}+\mathbf{T}_\mathbf{R}^{ \textsf {P} }\), of the logic of typicality \(\mathcal {ALC}+\mathbf{T}_\mathbf{R}\) by inclusions of the form \(\mathbf{T}(C) \sqsubseteq _p D\), whose intuitive meaning is that “typical Cs are Ds with a probability p”. We consider a notion of extension of an ABox containing only some typicality assertions, then we equip each extension with a probability. We then restrict entailment of a query F to those extensions whose probabilities belong to a given and fixed range. We propose a decision procedure for reasoning in \(\mathcal {ALC}+\mathbf{T}_\mathbf{R}^{ \textsf {P} }\) and we exploit it to show that entailment is ExpTime-complete as for the underlying \(\mathcal {ALC}\).


  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook - Theory, Implementation, and Applications, 2nd edn. Cambridge University Press, Cambridge (2007)CrossRefMATHGoogle Scholar
  2. 2.
    Baader, F., Hollunder, B.: Priorities on defaults with prerequisites, and their application in treating specificity in terminological default logic. J. Autom. Reason. 15(1), 41–68 (1995)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bonatti, P.A., Faella, M., Petrova, I., Sauro, L.: A new semantics for overriding in description logics. Artif. Intell. 222, 1–48 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bonatti, P.A., Lutz, C., Wolter, F.: The complexity of circumscription in DLs. J. Artif. Intell. Res. (JAIR) 35, 717–773 (2009)MATHGoogle Scholar
  5. 5.
    Casini, G., Straccia, U.: Rational closure for defeasible description logics. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp. 77–90. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15675-5_9 CrossRefGoogle Scholar
  6. 6.
    Casini, G., Straccia, U.: Defeasible Inheritance-Based Description Logics. J. Artif. Intell. Res. (JAIR) 48, 415–473 (2013)MathSciNetMATHGoogle Scholar
  7. 7.
    Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation as failure. ACM Trans. Comput. Logics (ToCL) 3(2), 177–225 (2002)CrossRefGoogle Scholar
  8. 8.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: ALC+T: a preferential extension of description logics. Fundamenta Informaticae 96, 341–372 (2009)MathSciNetMATHGoogle Scholar
  9. 9.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A nonmonotonic description logic for reasoning about typicality. Artif. Intell. 195, 165–202 (2013)CrossRefMATHGoogle Scholar
  10. 10.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Semantic characterization of rational closure: from propositional logic to description logics. Artif. Intell. 226, 1–33 (2015)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artif. Intell. 55(1), 1–60 (1992)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Pozzato, G.L.: Reasoning about surprising scenarios in description logics of typicality. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS (LNAI), vol. 10037, pp. 418–432. Springer, Cham (2016). doi: 10.1007/978-3-319-49130-1_31 CrossRefGoogle Scholar
  13. 13.
    Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Probabilistic description logics under the distribution semantics. Semant. Web 6(5), 477–501 (2015)CrossRefMATHGoogle Scholar
  14. 14.
    Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Reasoning with probabilistic ontologies. In: Proceedings of IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 4310–4316 (2015)Google Scholar
  15. 15.
    Sato, T.: A statistical learning method for logic programs with distribution semantics. In: Sterling, L. (ed.) Logic Programming, Proceedings of ICLP, pp. 715–729. MIT Press (1995)Google Scholar
  16. 16.
    Straccia, U.: Default inheritance reasoning in hybrid kl-one-style logics. In: Proceedings of IJCAI 1993, pp. 676–681. Morgan Kaufmann (1993)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Dipartimento di InformaticaUniversità di TorinoTurinItaly

Personalised recommendations