Complexity of Model Checking for Cardinality-Based Belief Revision Operators

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10369)

Abstract

This paper deals with the complexity of model checking for belief base revision. We extend the study initiated by Liberatore & Schaerf and introduce two new belief base revision operators stemming from consistent subbases maximal with respect to cardinality. We establish the complexity of the model checking problem for various operators within the framework of propositional logic as well as in the Horn fragment.

Keywords

Belief revision Complexity Model checking Maximal cardinality 

References

  1. 1.
    Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet contraction and revision functions. J. Symbolic Logic 50, 510–530 (1985)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Benferhat, S., Ben-Naim, J., Papini, O., Würbel, E.: An answer set programming encoding of prioritized removed sets revision: application to GIS. Appl. Intell. 32(1), 60–87 (2010)CrossRefMATHGoogle Scholar
  3. 3.
    Benferhat, S., Cayrol, C., Dubois, D., Lang, J., Prade, H.: Inconsistency management and prioritized syntax-based entailment. In: Proceedings of IJCAI 1993, pp. 640–645 (1993)Google Scholar
  4. 4.
    Cayrol, C., Lagasquie-Schiex, M., Schiex, T.: Nonmonotonic reasoning: from complexity to algorithms. Ann. Math. Artif. Intell. 22(3–4), 207–236 (1998)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Creignou, N., Pichler, R., Woltran, S.: Do hard sat-related reasoning tasks become easier in the Krom fragment? In: IJCAI (2013)Google Scholar
  6. 6.
    Creignou, N., Zanuttini, B.: A complete classification of the complexity of propositional abduction. SIAM J. Comput. 36, 207–229 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Eiter, T., Gottlob, G.: On the complexity of propositional knowledge base revision, updates, and counterfactuals. Artif. Intell. 57(2–3), 227–270 (1992)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gärdenfors, P.: Belief revision and nonmonotonic logic: Two sides of the same coin? In: Proceedings of ECAI 1990, pp. 768–773 (1990)Google Scholar
  9. 9.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H Freeman, New York (1979)MATHGoogle Scholar
  10. 10.
    Ginsberg, M.: Counterfactuals. Artif. Intell. 30, 35–79 (1986)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hansson, S.O.: Revision of belief sets and belief bases. In: Dubois, D., Prade, H. (eds.) Belief Change. Handbook of Defeasible Reasoning and Uncertainty Management Systems, pp. 17–75. Kluwer, Netherlands (1998)CrossRefGoogle Scholar
  12. 12.
    Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal change. Artif. Intell. 52, 263–294 (1991)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Lehmann, D.: Belief revision, revised. In: Proceedings of IJCAI 1995, pp. 1534–1540 (1995)Google Scholar
  14. 14.
    Liberatore, P., Schaerf, M.: Belief revision and update: complexity of model checking. J. Comput. Syst. Sci. 62(1), 43–72 (2001)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Nebel, B.: Belief revision and default reasoning: syntax-based approaches. In: Proceedings of KR 1991, pp. 417–428 (1991)Google Scholar
  16. 16.
    Nebel, B.: How hard is it to revise a belief base? In: Dubois, D., Prade, H. (eds.) Belief Change. Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 3, pp. 77–145. Springer, Netherlands (1998)CrossRefGoogle Scholar
  17. 17.
    Papadimitriou, C.H.: Computational Complexity. Addison Wesley, Boston (1994)MATHGoogle Scholar
  18. 18.
    Papini, O.: A complete revision function in propositional calculus. In: Proceedings of ECAI 1992, pp. 339–343 (1992)Google Scholar
  19. 19.
    Stockmeyer, L.J.: The polynomial-time hierarchy. Theor. Comput. Sci. 3(1), 1–22 (1976)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Wagner, K.: More complicated questions about maxima and minima, and some closures of NP. Theor. Comput. Sci. 51(1–2), 53–80 (1987)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Winslett, M.: Sometimes updates are circumscription. In: Proceedings of IJCAI 1989, pp. 859–863 (1989)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Aix-Marseille Université, CNRS, LIF, LSISMarseilleFrance
  2. 2.University of Sfax, ISIMSSfaxTunisia

Personalised recommendations