Skip to main content

Decision Theory Meets Linear Optimization Beyond Computation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10369))

Abstract

The paper is concerned with decision making under complex uncertainty. We consider the Hodges and Lehmann-criterion relying on uncertain classical probabilities and Walley’s maximality relying on imprecise probabilities. We present linear programming based approaches for computing optimal acts as well as for determining least favorable prior distributions in finite decision settings. Further, we apply results from duality theory of linear programming in order to provide theoretical insights into certain characteristics of these optimal solutions. Particularly, we characterize conditions under which randomization pays out when defining optimality in terms of the Gamma-Maximin criterion and investigate how these conditions relate to least favorable priors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A further mathematical characterization from the viewpoint of Gamma-Maximinity for certain imprecise probabilities is given in Footnote 3.

  2. 2.

    The proofs of Propositions 1, 2 and 3 are straightforward and therefore left out.

  3. 3.

    For the special case of an \(\varepsilon \)-contamination model (a.k.a. linear-vacuous model) of the form \(\mathcal {M}_{(\pi _0 , \varepsilon )}:= \{(1- \varepsilon ) \pi _0 + \varepsilon \pi : \pi \in \mathcal {P}(\varTheta )\}\), where \(\mathcal {P}(\varTheta )\) denotes the set of all probability measures on \(( \varTheta , 2^{\varTheta })\), \(\varepsilon > 0\) is a fixed contamination parameter and \(\pi _0 \in \mathcal {P}(\varTheta )\) is the central distribution, Gamma-Maximin is mathematically closely related to the Hodges and Lehmann-criterion: For fixed \(X:(\varTheta , 2^{\varTheta }) \rightarrow \mathbb {R}\) we have \(\underline{\mathbb {E}}_{\mathcal {M}_{(\pi _0 , \varepsilon )}}(X) = \min _{\pi \in \mathcal {P}(\varTheta )}((1 - \varepsilon ) \mathbb {E}_{\pi _0}(X)+ \varepsilon \mathbb {E}_{\pi }(X))= (1 - \varepsilon ) \mathbb {E}_{\pi _0}(X)+ \varepsilon \min _{\pi \in \mathcal {P}(\varTheta )}\mathbb {E}_{\pi }(X)=(1 - \varepsilon ) \mathbb {E}_{\pi _0}(X)+ \varepsilon \min _{\theta \in \varTheta }X(\theta )\). Thus, maximizing the lower expectation w.r.t. the \(\varepsilon \)-contamination model is equivalent to maximizing the Hodges and Lehmann-criterion with trust parameter \((1- \varepsilon )\) and prior \(\pi _0\).

References

  1. Cuzzolin, F.: Two new Bayesian approximations of belief functions based on convex geometry. IEEE T. Syst. Man. Cy. B 37, 993–1008 (2007)

    Article  Google Scholar 

  2. Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique prior. J. Math. Econ. 18, 141–153 (1989)

    Article  MATH  Google Scholar 

  3. Huber, P.: Robust Statistics. Wiley, New York (1981)

    Book  MATH  Google Scholar 

  4. Hodges, J., Lehmann, E.: The use of previous experience in reaching statistical decisions. Ann. Math. Stat. 23, 396–407 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hable, R., Troffaes, M.: Computation. In: Augustin, T., Coolen, F., de Cooman, G., Troffaes, M. (eds.) Introduction to Imprecise Probabilities, pp. 329–337. Wiley, Chichester (2014)

    Google Scholar 

  6. Kikuti, D., Cozman, F., Filho, R.: Sequential decision making with partially ordered preferences. Artif. Intel. 175, 1346–1365 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kofler, E., Menges, G.: Entscheiden bei unvollständiger Information. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  8. Levi, I.: The Enterprise of Knowledge: An Essay on Knowledge, Credal Probability, and Chance. MIT Press, Cambridge (1983)

    Google Scholar 

  9. Smets, P.: Decision making in the TBM: the necessity of the pignistic transformation. Int. J. Approx. Reason. 38, 133–147 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Smets, P.: Decision making in a context where uncertainty is represented by belief functions. In: Srivastava, R., Mock, T. (eds.) Belief Functions in Business Decisions, pp. 17–61. Physica, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Schervish, M., Seidenfeld, T., Kadane, J., Levi, I.: Extensions of expected utility theory and some limitations of pairwise comparisons. In: Bernard, J.-M., Seidenfeld, T., Zaffalon, M. (eds.) Proceedings of ISIPTA 2003, pp. 496–510. Carleton Scientific, Waterloo (2003)

    Google Scholar 

  12. Troffaes, M.: Decision making under uncertainty using imprecise probabilities. Int. J. Approx. Reason. 45, 17–29 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Utkin, L., Augustin, T.: Powerful algorithms for decision making under partial prior information and general ambiguity attitudes. In: Cozman, F., Nau, R., Seidenfeld, T. (eds.) Proceedings of ISIPTA 2005, pp. 349–358 (2005)

    Google Scholar 

  14. Utkin, L., Kozine, I.: Different faces of the natural extension. In: de Cooman, G., Fine, T., Seidenfeld, T. (eds.) Proceedings of ISIPTA 2001, pp. 316–323 (2001)

    Google Scholar 

  15. Vanderbei, R.: Linear Programming: Foundations and Extensions. Springer, New York (2014)

    Book  MATH  Google Scholar 

  16. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London (1991)

    Book  MATH  Google Scholar 

  17. Weichselberger, K.: Elementare Grundbegriffe einer allgemeineren Wahrscheinlichkeitsrechnung I: Intervallwahrscheinlichkeit als umfassendes Konzept. Physica, Heidelberg (2001)

    Book  MATH  Google Scholar 

  18. Weichselberger, K.: Interval probability on finite sample spaces. In: Rieder, H. (ed.) Robust Statistics, Data Analysis, and Computer Intensive Methods, pp. 391–409. Springer, New York (1996)

    Chapter  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the three anonymous referees for their helpful comments and their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Jansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Jansen, C., Augustin, T., Schollmeyer, G. (2017). Decision Theory Meets Linear Optimization Beyond Computation. In: Antonucci, A., Cholvy, L., Papini, O. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2017. Lecture Notes in Computer Science(), vol 10369. Springer, Cham. https://doi.org/10.1007/978-3-319-61581-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61581-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61580-6

  • Online ISBN: 978-3-319-61581-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics