Evidential k-NN for Link Prediction

  • Sabrine Mallek
  • Imen Boukhris
  • Zied Elouedi
  • Eric Lefevre
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10369)


Social networks play a major role in today’s society, they have shaped the unfolding of social relationships. To analyze networks dynamics, link prediction i.e., predicting potential new links between actors, is concerned with inspecting networks topology evolution over time. A key issue to be addressed is the imperfection of real world social network data which are usually missing, noisy, or partially observed. This uncertainty is perfectly handled under the general framework of the belief function theory. Here, link prediction is addressed from a supervised learning perspective by extending the evidential k-nearest neighbors approach. Each nearest neighbor represents a source of information concerning new links existence. Overall evidence is pooled via the belief function theory fusion scheme. Experiments are conducted on real social network data where performance is evaluated along with a comparative study. Experiment results confirm the effectiveness of the proposed framework, especially when handling skewness in data.


Link prediction Social network Belief function theory Information fusion Evidential k-nearest neighbor Supervised learning 


  1. 1.
    Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)CrossRefGoogle Scholar
  2. 2.
    Adar, E., Ré, C.: Managing uncertainty in social networks. Data Eng. Bull. 30(2), 23–31 (2007)Google Scholar
  3. 3.
    Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P., Jaakkola, T.: Mixed membership stochastic block models for relational data with application to protein-protein interactions. In: Proceedings of the International Biometrics Society Annual Meeting (2006)Google Scholar
  4. 4.
    Cukierski, W., Hamner, B., Yang, B.: Graph-based features for supervised link prediction. In: Proceedings of International Joint Conference on Neural Networks, pp. 1237–1244 (2011)Google Scholar
  5. 5.
    Dahlin, J., Svenson, P.: A method for community detection in uncertain networks. In: Proceedings of the 2011 European Intelligence and Security Informatics Conference, pp. 155–162 (2011)Google Scholar
  6. 6.
    Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Denoeux, T.: A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. Syst. Man Cybern. 25, 804–813 (1995)CrossRefGoogle Scholar
  8. 8.
    Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. The MIT Press, Cambridge (2007)MATHGoogle Scholar
  9. 9.
    Hasan, M.A., Chaoji, V., Salem, S., Zaki, M.J.: Link prediction using supervised learning. In: Proceedings of the 6th Workshop on Link Analysis, Counter Terrorism and Security (2006)Google Scholar
  10. 10.
    Hasan, M.A., Zaki, M.J.: A survey of link prediction in social networks. In: Aggarwal, C.C. (ed.) Social Network Data Analytics, pp. 243–275. Springer, Newyork (2011)CrossRefGoogle Scholar
  11. 11.
    Huang, Z., Li, X., Chen, H.: Link prediction approach to collaborative filtering. In: Proceedings of the 5th ACMIEEE-CS Joint Conference on Digital Libraries, JCDL 2005, pp. 141–142. ACM (2005)Google Scholar
  12. 12.
    Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)Google Scholar
  13. 13.
    Johansson, F., Svenson, P.: Constructing and analyzing uncertain social networks from unstructured textual data. In: Özyer, T., Erdem, Z., Rokne, J., Khoury, S. (eds.) Mining Social Networks and Security Informatics. Lecture Notes in Social Networks, pp. 41–61. Springer, Dordrecht (2014)Google Scholar
  14. 14.
    Keller, J.M., Gray, M.R., Givens, J.A.: A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. SMC–15(4), 580–585 (1985)CrossRefGoogle Scholar
  15. 15.
    Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)CrossRefGoogle Scholar
  16. 16.
    Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V.: New perspectives and methods in link prediction. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 243–252 (2010)Google Scholar
  17. 17.
    Lu, L., Zhou, T.: Link prediction in complex networks: a survey. Phys. A 390(6), 1150–1170 (2011)CrossRefGoogle Scholar
  18. 18.
    Mallek, S., Boukhris, I., Elouedi, Z., Lefevre, E.: Evidential link prediction based on group information. In: Prasath, R., Vuppala, A.K., Kathirvalavakumar, T. (eds.) MIKE 2015. LNCS, vol. 9468, pp. 482–492. Springer, Cham (2015). doi: 10.1007/978-3-319-26832-3_45 CrossRefGoogle Scholar
  19. 19.
    Mallek, S., Boukhris, I., Elouedi, Z., Lefevre, E.: The link prediction problem under a belief function framework. In: Proceedings of the IEEE 27th International Conference on the Tools with Artificial Intelligence, pp. 1013–1020 (2015)Google Scholar
  20. 20.
    Mallek, S., Boukhris, I., Elouedi, Z., Lefevre, E.: An evidential method for multi-relational link prediction in uncertain social networks. In: Proceedings of the 5th International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making, pp. 280–292 (2016)Google Scholar
  21. 21.
    Mallek, S., Boukhris, I., Elouedi, Z., Lefevre, E.: Evidential missing link prediction in uncertain social networks. In: Proceedings of the 16th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 274–285 (2016)Google Scholar
  22. 22.
    McAuley, J.J., Leskovec, J.: Learning to discover social circles in ego networks. In: Proceedings of the 26th Annual Conference on Neural Information Processing Systems 2012, pp. 548–556 (2012)Google Scholar
  23. 23.
    Newman, M.E.J.: Clustering and preferential attachment in growing networks. Phys. Rev. E 64, 025102 (2001)CrossRefGoogle Scholar
  24. 24.
    Rhodes, C.J., Jones, P.: Inferring missing links in partially observed social networks. JORS 60(10), 1373–1383 (2009)CrossRefGoogle Scholar
  25. 25.
    Shafer, G.R.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)MATHGoogle Scholar
  26. 26.
    Smets, P.: The canonical decomposition of a weighted belief. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI 1995, vol. 14, pp. 1896–1901 (1995)Google Scholar
  27. 27.
    Smets, P.: Application of the transferable belief model to diagnostic problems. Int. J. Intell. Syst. 13(2–3), 127–157 (1998)CrossRefMATHGoogle Scholar
  28. 28.
    Speegle, G., Bai, Y., Cho, Y.R.: Extending local similarity indexes with knn for link prediction. In: Proceedings of the 14th International Conference on Computational Science and Its Applications, ICCSA 2014, pp. 1–7 (2013)Google Scholar
  29. 29.
    Svenson, P.: Social network analysis of uncertain networks. In: Proceedings of the 2nd Skövde Workshop on Information Fusion Topics (2008)Google Scholar
  30. 30.
    Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefMATHGoogle Scholar
  31. 31.
    Zhou, T., Lü, L., Zhang, Y.: Predicting missing links via local information. Eur. Phys. J. B-Condens. Matter Complex Syst. 71(4), 623–630 (2009)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sabrine Mallek
    • 1
    • 2
  • Imen Boukhris
    • 1
  • Zied Elouedi
    • 1
  • Eric Lefevre
    • 2
  1. 1.LARODEC, Institut Supérieur de Gestion de TunisUniversité de TunisTunisTunisia
  2. 2.Univ. Artois, EA 3926, Laboratoire de Génie Informatique et d’Automatique de l’Artois (LGI2A)BéthuneFrance

Personalised recommendations