Self-healing Mechanism over the Cloud on Interaction Layer for AALs Using HARMS

  • Mauricio GomezEmail author
  • Abelghani Chibani
  • Yacine Amirat
  • Eric T. Matson
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 619)


In humans, interactions happen as a process taught generation to generation, it is our nature given the implicit need of cooperation within society. When talking about systems, reality is rather different, specifically for systems conformed by heterogeneous agents. In this sense, errors in interactions can occur at any time and for many different reasons. This paper proposes a self-healing mechanism based on model checking, taking advantages of the cloud for ambient assisted living systems.


Model checking Cloud computing Multi-agent systems Heterogeneous agents HARMS 


  1. 1.
    Lewis, J., Matson, E.T., Wei, S., Min, B.C.: Implementing HARMS-based indistinguishability in ubiquitous robot organizations. Robot. Autonom. Syst. 61(11), 1186–1192 (2013)CrossRefGoogle Scholar
  2. 2.
    Belbachir, A.N., Drobics, M., Marschitz, W.: Ambient assisted living for ageing well - an overview. Elektrotechnik Und Informationstechnik 127(7–8), 200–205 (2010)CrossRefGoogle Scholar
  3. 3.
    Dai, Y., Xiang, Y., Zhang, G.: Self-healing and hybrid diagnosis in cloud computing. In: LNCS, vol. 5931 (831609), pp. 45–56 (2009)Google Scholar
  4. 4.
    Kirchner, D., Niemczyk, S., Geihs, K. RoSHA : A multi-robot self-healing architecture. In: LNCS, vol. 8371, pp. 304–315 (2004)Google Scholar
  5. 5.
    Sharma, V., Kumar, R., Rana, P.S.: Self-healing neural model for stabilization against failures over networked UAVs. IEEE Commun. Lett. 19(11), 2013–2016 (2015)CrossRefGoogle Scholar
  6. 6.
    Ju, J., Liu, Z., Chen, W., Wang, J.: Switched topology control and negotiation of distributed self-healing for mobile robot formation. In: LSMS 2014 and ICSEE 2014, pp. 562–574 (2014)Google Scholar
  7. 7.
    Cloth, L., Haverkort, B.R.: Model checking for survivability! In: Proceedings Second International Conference on the Quantitative Evaluation of SysTems (QEST 2005), vol. 2005, pp. 145–154 (2005)Google Scholar
  8. 8.
    Serral, E., Valderas, P., Pelechano, V.: Supporting ambient assisting living by using executable context-adaptive task models. Int. J. Adv. Softw. 7(1), 77–87 (2014)Google Scholar
  9. 9.
    Hilia, M., Chibani, A., Djouani, K.: Trends and challenges in formal specification and verification of services composition in ambient assisted living applications. Procedia Comput. Sci. 19(Ant), 540–547 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mauricio Gomez
    • 1
    • 2
    Email author
  • Abelghani Chibani
    • 2
  • Yacine Amirat
    • 2
  • Eric T. Matson
    • 1
  1. 1.M2M LabPurdue UniversityWest LafayetteUSA
  2. 2.Lissi LabUniversité de Paris-Est Creteil (UPEC)Vitry-sur-SeineFrance

Personalised recommendations