Automatic Construction of Domain-Specific Sentiment Lexicons for Polarity Classification

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 619)

Abstract

The article describes a strategy to build sentiment lexicons (positive and negative words) from corpora. Special attention will paid to the construction of a domain-specific lexicon from a corpus of movie reviews. Polarity words of the lexicon are assigned weights standing for different degrees of positiveness and negativeness. This lexicon is integrated into a sentiment analysis system in order to evaluate its performance in the task of sentiment classification. The experiments performed shows that the lexicon we generated automatically outperforms other manual lexicons when they are used as features of a supervised sentiment classifier.

Keywords

Sentiment analysis Opinion mining Sentiment lexicon Polarity classification 

References

  1. 1.
    Augustyniak, L., Kajdanowicz, T., Kazienko, P., Kulisiewicz, M., Tuliglowicz, W.: An approach to sentiment analysis of movie reviews: lexicon based vs. classification. In: International Conference on Hybrid Artificial Intelligence Systems, pp. 168–178. Springer (2014)Google Scholar
  2. 2.
    Benamara, F., Cesarano, C., Picariello, A., Recupero, D.R., Subrahmanian, V.S.: Sentiment analysis: adjectives and adverbs are better than adjectives alone. In: ICWSM. Citeseer (2007)Google Scholar
  3. 3.
    Gatti, L., Guerini, M., Turchi, M.: Sentiwords: deriving a high precision and high coverage lexicon for sentiment analysis. IEEE Trans. Affect. Comput. 7(4), 409–421 (2016)CrossRefGoogle Scholar
  4. 4.
    Huang, S., Niu, Z., Shi, C.: Automatic construction of domain-specific sentiment lexicon based on constrained label propagation. Knowl.-Based Syst. 56, 191–200 (2014)CrossRefGoogle Scholar
  5. 5.
    Hutto, C.J., Gilbert, E.: Vader: a parsimonious rule-based model for sentiment analysis of social media text. In: Eighth International AAAI Conference on Weblogs and Social Media (2014)Google Scholar
  6. 6.
    Kamps, J., Marx, M., Mokken, R.J., De Rijke, M., et al.: Using wordnet to measure semantic orientations of adjectives. In: LREC, vol. 4, pp. 1115–1118. Citeseer (2004)Google Scholar
  7. 7.
    Kim, S.M., Hovy, E.: Extracting opinions, opinion holders, and topics expressed in online news media text. In: Proceedings of the Workshop on Sentiment and Subjectivity in Text, pp. 1–8. Association for Computational Linguistics (2006)Google Scholar
  8. 8.
    Lu, Y., Castellanos, M., Dayal, U., Zhai, C.: Automatic construction of a context-aware sentiment lexicon: an optimization approach. In: Proceedings of the 20th International Conference on World Wide Web, pp. 347–356. ACM (2011)Google Scholar
  9. 9.
    Lyu, K., Kim, H.: Sentiment analysis using word polarity of social media. Wireless Pers. Commun. 89(3), 941–958 (2016)CrossRefGoogle Scholar
  10. 10.
    Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150. Association for Computational Linguistics, Portland, June 2011. http://www.aclweb.org/anthology/P11-1015
  11. 11.
    Pang, B., Lee, L.: A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the ACL (2004)Google Scholar
  12. 12.
    Potts, C.: On the negativity of negation. Seman. Linguist. Theory 20, 636–659 (2010)CrossRefGoogle Scholar
  13. 13.
    Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)CrossRefGoogle Scholar
  14. 14.
    Turney, P.D.: Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 417–424. Association for Computational Linguistics (2002)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Centro Singular de Investigación en Tecnoloxías da Información (CITIUS)Universidad de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations