Commensalism: The Case of the Human Zymobiome

  • João InácioEmail author
  • Heide-Marie DanielEmail author


The mycological community of humans is subject to numerous interactions, for example, among cohabitating fungi, other microbes, their hosts, as well as biotic and abiotic factors the host is exposed to. Yeasts form an important part of this community. While human-colonising yeasts receive high attention as opportunistic pathogens, they are less recognised as commensals. The ecology of the yeast-human relationship bears many open questions. This includes the potential effects of colonising yeasts on humans. Negative effects may be linked to an imbalance of total microbiota, and literature often associated the state of health with high mycological diversity. The mycological communities are less well studied compared to the bacterial components, and a systematic evaluation of the fungal diversity that colonises humans is still difficult. Literature suggests that the same yeast species that are known as frequent opportunists (e.g. Candida albicans) may also play beneficial roles, while dominantly as beneficial recognised yeasts (e.g. Saccharomyces cerevisiae) may turn infective in states of immune impairment. The yet incomplete list of factors that influence yeast diversity in humans includes age, diet, body site, medical treatments, bacterial community composition, and immune status. Further studies of this area are hoped to extend the knowledge on healthy yeast diversity and the interactions in which yeasts participate.


Yeast Zymobiome Fungi Mycobiome 


  1. Anderson HW (1917) Yeast-like fungi of the human intestinal tract. J Infect Dis 21:341–386CrossRefGoogle Scholar
  2. Angebault C, Djossou F, Abélanet S, Permal E, Ben Soltana M, Diancourt L, Bouchier C, Woerther PL, Catzeflis F, Andremont A, d’Enfert C, Bougnoux ME (2013) Candida albicans is not always the preferential yeast colonizing humans: a study in Wayampi Amerindians. J Infect Dis 208:1705–1716PubMedCrossRefGoogle Scholar
  3. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Doré J, MetaHIT Consortium (additional members), Weissenbach J, Ehrlich DS, Bork P (2011) Enterotypes of the human gut microbiome. Nature 473:174–180PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ashford BK (1915) Relation of the genus “Monila” to certain fermentative conditions in the intestinal tract in Porto Rico. JAMA 64:1893–1896CrossRefGoogle Scholar
  5. Benadé E, Stone W, Mouton M, Postma F, Wilsenach J, Botha A (2016) Binary interactions of antagonistic bacteria with Candida albicans under aerobic and anaerobic conditions. Microb Ecol 71:645–659PubMedCrossRefGoogle Scholar
  6. Bittinger K, Charlson ES, Loy E, Shirley DJ, Haas AR, Laughlin A, Yi Y, Wu GD, Lewis JD, Frank I, Cantu E, Diamond JM, Christie JD, Collman RG, Bushman FD (2014) Improved characterization of medically relevant fungi in the human respiratory tract using next-generation sequencing. Genome Biol 15:487PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bradford LL, Ravel J (2017) The vaginal mycobiome: a contemporary perspective on fungi in women’s health and diseases. Virulence 8:342–351PubMedCrossRefGoogle Scholar
  8. Casadevall A (2007) Determinants of virulence in the pathogenic fungi. Fungal Biol Rev 21:130–132PubMedPubMedCentralCrossRefGoogle Scholar
  9. Charlson ES, Diamond JM, Bittinger K, Fitzgerald AS, Yadav A, Haas AR, Bushman FD, Collman RG (2012) Lung enriched organisms and aberrant bacterial and fungal respiratory microbiota after lung transplant. Am J Respir Crit Care Med 186:536–545PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chen Y, Chen Z, Guo R, Chen N, Lu H, Huang S, Wang J, Li L (2011) Correlation between gastrointestinal fungi and varying degrees of chronic hepatitis B virus infection. Diagn Microbiol Infect Dis 70:492–498PubMedCrossRefGoogle Scholar
  11. Clavaud C, Jourdain R, Bar-Hen A, Tichit M, Bouchier C, Pouradier F, El Rawadi C, Guillot J, Ménard-Szczebara F, Breton L, Latgé JP, Mouyna I (2013) Dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colonizing the scalp. PLoS One 8:e58203PubMedPubMedCentralCrossRefGoogle Scholar
  12. Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cogen AL, Nizet V, Gallo RL (2008) Skin microbiota: a source of disease or defence? Br J Dermatol 158:442–455PubMedPubMedCentralCrossRefGoogle Scholar
  14. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cui L, Morris A, Ghedin E (2013) The human mycobiome in health and disease. Genome Med 5:63PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cui L, Lucht L, Tipton L, Rogers MB, Fitch A, Kessinger C, Camp D, Kingsley L, Leo N, Greenblatt RM, Fong S, Stone S, Dermand JC, Kleerup EC, Huang L, Morris A, Ghedin E (2015) Topographic diversity of the respiratory tract mycobiome and alteration in HIV and lung disease. Am J Respir Crit Care Med 191:932–942PubMedPubMedCentralCrossRefGoogle Scholar
  17. Daniel HM, Lachance MA, Kurtzman CP (2014) On the reclassification of species assigned to Candida and other anamorphic ascomycetous yeast genera based on phylogenetic circumscription. Antonie Van Leeuwenhoek 106:67–84PubMedCrossRefGoogle Scholar
  18. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2013) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563PubMedPubMedCentralCrossRefGoogle Scholar
  19. De Sordi L, Mühlschlegel FA (2009) Quorum sensing and fungal bacterial interactions in Candida albicans: a communicative network regulating microbial coexistence and virulence. FEMS Yeast Res 9:990–999PubMedCrossRefGoogle Scholar
  20. Delhaes L, Monchy S, Fréalle E, Hubans C, Salleron J, Leroy S, Prevotat A, Wallet F, Wallaert B, Dei-Cas E, Sime-Ngando T, Chabé M, Viscogliosi E (2012) The airway microbiota in cystic fibrosis: a complex fungal and bacterial community-implications for therapeutic management. PLoS One 7:e36313PubMedPubMedCentralCrossRefGoogle Scholar
  21. d’Enfert C (2009) Hidden killers: persistence of opportunistic fungal pathogens in the human host. Curr Opin Microbiol 12:358–364PubMedCrossRefGoogle Scholar
  22. Diaz PI, Strausbaugh LD, Dongari-Bagtzoglou A (2014) Fungal-bacterial interactions and their relevance to oral health: linking the clinic and the bench. Front Cell Infect Microbiol 4:101PubMedPubMedCentralCrossRefGoogle Scholar
  23. Diaz PI, Hong BY, Dupuy AK, Strausbaugh LD (2017) Mining the oral mycobiome: methods, components, and meaning. Virulence 8:313–323PubMedCrossRefGoogle Scholar
  24. Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB (2016) The microbiome and the respiratory tract. Annu Rev Physiol 78:481–504PubMedCrossRefGoogle Scholar
  25. Drell T, Lillsaar T, Tummeleht L, Simm J, Aaspõllu A, Väin E, Saarma I, Salumets A, Donders GG, Metsis M (2013) Characterization of the vaginal micro- and mycobiome in asymptomatic reproductive-age Estonian women. PLoS One 8:e54379PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dupuy AK, David MS, Li L, Heider TN, Peterson JD, Montano EA, Dongari-Bagtzoglou A, Diaz PI, Strausbaugh LD (2014) Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal. PLoS One 9:e90899PubMedPubMedCentralCrossRefGoogle Scholar
  27. Enache-Angoulvant A, Hennequin C (2005) Invasive Saccharomyces infection: a comprehensive review. Clin Infect Dis 41:1559–1568PubMedCrossRefGoogle Scholar
  28. Erb-Downward JR, Falkowski NR, Mason KL, Muraglia R, Huffnagle GB (2013) Modulation of postantibiotic bacterial community reassembly and host response by Candida albicans. Sci Rep 3:2191PubMedPubMedCentralCrossRefGoogle Scholar
  29. Erturk-Hasdemir D, Kasper DL (2013) Resident commensals shaping immunity. Curr Opin Immunol 25:450–455PubMedPubMedCentralCrossRefGoogle Scholar
  30. Falsetta ML, Klein MI, Colonne PM, Scott-Anne K, Gregoire S, Pai CH, Gonzalez-Begne M, Watson G, Krysan DJ, Bowen WH, Koo H (2014) Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect Immun 82:1968–1981PubMedPubMedCentralCrossRefGoogle Scholar
  31. Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, Schoenfeld D, Nomicos E, Park M, NIH Intramural Sequencing Center Comparative Sequencing Program, Kong HH, Segre JA (2013) Topographic diversity of fungal and bacterial communities in human skin. Nature 498:367–370PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gaitanis G, Magiatis P, Hantschke M, Bassukas ID, Velegraki A (2012) The Malassezia genus in skin and systemic diseases. Clin Microbiol Rev 25:106–141PubMedPubMedCentralCrossRefGoogle Scholar
  33. Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, Gillevet PM (2010) Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog 6:e1000713PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gouba N, Drancourt M (2015) Digestive tract mycobiota: a source of infection. Med Mal Infect 45:9–16PubMedCrossRefGoogle Scholar
  36. Gouba N, Raoult D, Drancourt M (2014) Eukaryote culturomics of the gut reveals new species. PLoS One 9:e106994PubMedPubMedCentralCrossRefGoogle Scholar
  37. Guo R, Zheng N, Lu H, Yin H, Yao J, Chen Y (2012) Increased diversity of fungal flora in the vagina of patients with recurrent vaginal candidiasis and allergic rhinitis. Microb Ecol 64:918–927PubMedCrossRefGoogle Scholar
  38. Hallen-Adams HE, Suhr MJ (2017) Fungi in the healthy human gastrointestinal tract. Virulence 8:352–358PubMedCrossRefGoogle Scholar
  39. Hallen-Adams HE, Kachman SD, Kim J, Legge RM, Martınez I (2015) Fungi inhabiting the healthy human gastrointestinal tract: a diverse and dynamic community. Fungal Ecol 15:9–17CrossRefGoogle Scholar
  40. Harding CR, Moore AE, Rogers JS, Meldrum H, Scott AE, McGlone FP (2002) Dandruff: a condition characterized by decreased levels of intercellular lipids in scalp stratum corneum and impaired barrier function. Arch Dermatol Res 294:221–230PubMedCrossRefGoogle Scholar
  41. Hatoum R, Labrie S, Fliss I (2012) Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front Microbiol 3:421PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, Lewis JD, Bushman FD (2013) Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 8:e66019PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hogan DA, Vik A, Kolter R (2004) A Pseudomonas aeruginosa quorum sensing molecule influences Candida albicans morphology. Mol Microbiol 54:1212–1223PubMedCrossRefGoogle Scholar
  44. Huffnagle GB, Noverr MC (2013) The emerging world of the fungal microbiome. Trends Microbiol 21:334–341PubMedPubMedCentralCrossRefGoogle Scholar
  45. Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, Brown J, Becker CA, Fleshner PR, Dubinsky M, Rotter JI, Wang HL, McGovern DP, Brown GD, Underhill DM (2012) Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 336:1314–1317PubMedPubMedCentralCrossRefGoogle Scholar
  46. Imabayashi Y, Moriyama M, Takeshita T, Ieda S, Hayashida JN, Tanaka A, Maehara T, Furukawa S, Ohta M, Kubota K, Yamauchi M, Ishiguro N, Yamashita Y, Nakamura S (2016) Molecular analysis of fungal populations in patients with oral candidiasis using next-generation sequencing. Sci Rep 6:28110PubMedPubMedCentralCrossRefGoogle Scholar
  47. Jo JH, Deming C, Kennedy EA, Conlan S, Polley EC, Ng WL, NISC Comparative Sequencing Program, Segre JA, Kong HH (2016) Diverse human skin fungal communities in children converge in adulthood. J Invest Dermatol 136:2356–2363PubMedCrossRefGoogle Scholar
  48. Jo JH, Kennedy EA, Kong HH (2017) Topographical and physiological differences of the skin mycobiome in health and disease. Virulence 8:324–333PubMedCrossRefGoogle Scholar
  49. Jung WH, Croll D, Cho JH, Kim YR, Lee YW (2015) Analysis of the nasal vestibule mycobiome in patients with allergic rhinitis. Mycoses 58:167–172PubMedCrossRefGoogle Scholar
  50. Kalan L, Loesche M, Hodkinson BP, Heilmann K, Ruthel G, Gardner SE, Grice EA (2016) Redefining the chronic-wound microbiome: fungal communities are prevalent, dynamic, and associated with delayed healing. MBio 7:e01058-16PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kennedy MJ, Volz PA (1985) Effect of various antibiotics on gastrointestinal colonization and dissemination by Candida albicans. Sabouraudia 23:265–273PubMedCrossRefGoogle Scholar
  52. Kerr JR (1999) Bacterial inhibition of fungal growth and pathogenicity. Microb Ecol Health Dis 11:129–142CrossRefGoogle Scholar
  53. Kim YG, Udayanga KG, Totsuka N, Weinberg JB, Nunez G, Shibuya A (2014) Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE2. Cell Host Microbe 15:95–102PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kim SH, Clark ST, Surendra A, Copeland JK, Wang PW, Ammar R, Collins C, Tullis DE, Nislow C, Hwang DM, Guttman DS, Cowen LE (2015) Global analysis of the fungal microbiome in cystic fibrosis patients reveals loss of function of the transcriptional repressor Nrg1 as a mechanism of pathogen adaptation. PLoS Pathog 11:e1005308PubMedPubMedCentralCrossRefGoogle Scholar
  55. Klotz SA, Gaur NK, De Armond R, Sheppard D, Khardori N, Edwards JE Jr, Lipke PN, El-Azizi M (2007) Candida albicans Als proteins mediate aggregation with bacteria and yeasts. Med Mycol 45:363–370PubMedCrossRefGoogle Scholar
  56. Kostoulias X, Murray GL, Cerqueira GM, Kong JB, Bantun F, Mylonakis E, Khoo CA, Peleg AY (2016) Impact of a cross-kingdom signalling molecule of Candida albicans on Acinetobacter baumannii physiology. Antimicrob Agents Chemother 60:161–167CrossRefGoogle Scholar
  57. Kramer R, Sauer-Heilborn A, Welte T, Guzman CA, Abraham WR, Höfle MG (2015) Cohort study of air way mycobiome in adult cystic fibrosis patients: differences in community structure between fungi and bacteria reveal predominance of transient fungal elements. J Clin Microbiol 53:2900–2907PubMedPubMedCentralCrossRefGoogle Scholar
  58. Krause R, Halwachs B, Thallinger GG, Klymiuk I, Gorkiewicz G, Hoenigl M, Prattes J, Valentin T, Heidrich K, Buzina W, Salzer HJ, Rabensteiner J, Prüller F, Raggam RB, Meinitzer A, Moissl-Eichinger C, Högenauer C, Quehenberger F, Kashofer K, Zollner-Schwetz I (2016) Characterisation of Candida within the mycobiome/microbiome of the lower respiratory tract of ICU patients. PLoS One 11:e0155033PubMedPubMedCentralCrossRefGoogle Scholar
  59. Krause R, Moissl-Eichinger C, Halwachs B, Gorkiewicz G, Berg G, Valentin T, Prattes J, Högenauer C, Zollner-Schwetz I (2017) Mycobiome in the lower respiratory tract – a clinical perspective. Front Microbiol 7:2169PubMedPubMedCentralCrossRefGoogle Scholar
  60. Leung MHY, Chan KCK, Lee PKH (2016) Skin fungal community and its correlation with bacterial community of urban Chinese individuals. Microbiome 4:46PubMedPubMedCentralCrossRefGoogle Scholar
  61. Liguori G, Lamas B, Richard ML, Brandi G, da Costa G, Hoffmann TW, Di Simone MP, Calabrese C, Poggioli G, Langella P, Campieri M, Sokol H (2016) Fungal dysbiosis in mucosa-associated microbiota of Crohn’s disease patients. J Crohns Colitis 10:296–305PubMedCrossRefGoogle Scholar
  62. Lindsay AK, Hogan DA (2014) Candida albicans: molecular interactions with Pseudomonas aeruginosa and Staphylococcus aureus. Fungal Biol Rev 28:85–96CrossRefGoogle Scholar
  63. Liu X-Z, Wang Q-M, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, Millanes AM, Wedin M, Yurkov AM, Boekhout T, Bai FY (2016) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147PubMedCentralCrossRefGoogle Scholar
  64. Martin IW, Tonner R, Trivedi J, Miller H, Lee R, Liang X, Rotello L, Isenbergh E, Anderson J, Perl T, Zhang SX (2017) Saccharomyces boulardii probiotic-associated fungemia: questioning the safety of this preventive probiotic’s use. Diagn Microbiol Infect Dis 87:286–288PubMedCrossRefGoogle Scholar
  65. Mason KL, Erb Downward JR, Mason KD, Falkowski NR, Eaton KA, Kao JY, Young VB, Huffnagle GB (2012) Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy. Infect Immun 80:3371–3380PubMedPubMedCentralCrossRefGoogle Scholar
  66. McFarland LV (2010) Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J Gastroenterol 16:2202–2222PubMedPubMedCentralCrossRefGoogle Scholar
  67. Miranda LN, van der Heijden IM, Costa SF, Sousa AP, Sienra RA, Gobara S, Santos CR, Lobo RD, Pessoa VP Jr, Levin AS (2009) Candida colonisation as a source for candidaemia. J Hosp Infect 72:9–16PubMedCrossRefGoogle Scholar
  68. Morales DK, Grahl N, Okegbe C, Dietrich LEP, Jacobs NJ, Hogan DA (2013) Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines. MBio 4:e00526-12PubMedPubMedCentralCrossRefGoogle Scholar
  69. Moyes DL, Naglik JR (2012) The mycobiome: influencing IBD severity. Cell Host Microbe 11:551–552PubMedCrossRefGoogle Scholar
  70. Mukherjee PK, Chandra J, Retuerto M, Sikaroodi M, Brown RE, Jurevic R, Salata RA, Lederman MM, Gillevet PM, Ghannoum MA (2014) Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog 10:e1003996PubMedPubMedCentralCrossRefGoogle Scholar
  71. Mukherjee PK, Sendid B, Hoarau G, Colombel JF, Poulain D, Ghannoum MA (2015) Mycobiota in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 12:77–87PubMedCrossRefGoogle Scholar
  72. Murdoch TB, Xu W, Stempak JM, Landers C, Targan SR, Rotter JI, Silverberg MS (2012) Pattern recognition receptor and autophagy gene variants are associated with development of antimicrobial antibodies in Crohn’s disease. Inflamm Bowel Dis 18:1743–1748PubMedPubMedCentralCrossRefGoogle Scholar
  73. Neville AB, d’Enfert C, Bougnoux ME (2015) Candida albicans commensalism in the gastrointestinal tract. FEMS Yeast Res 15:fov081PubMedCrossRefGoogle Scholar
  74. Nguyen LD, Viscogliosi E, Delhaes L (2015) The lung mycobiome: an emerging field of the human respiratory microbiome. Front Microbiol 6:89PubMedPubMedCentralGoogle Scholar
  75. Nilsson RH, Ryberg M, Kristiansson E, Abarenkov K, Larsson KH, Kõljalg U (2006) Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS One 1:e59PubMedPubMedCentralCrossRefGoogle Scholar
  76. Noverr MC, Huffnagle GB (2004) Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect Immun 72:6206–6210PubMedPubMedCentralCrossRefGoogle Scholar
  77. Noverr MC, Phare SM, Toews GB, Coffey MJ, Huffnagle GB (2001) Pathogenic yeasts Cryptococcus neoformans and Candida albicans produce immunomodulatory prostaglandins. Infect Immun 69:2957–2963PubMedPubMedCentralCrossRefGoogle Scholar
  78. Noverr MC, Noggle RM, Toews GB, Huffnagle GB (2004) Role of antibiotics and fungal microbiota in driving pulmonary allergic responses. Infect Immun 72:4996–5003PubMedPubMedCentralCrossRefGoogle Scholar
  79. Noverr MC, Falkowski NR, McDonald RA, McKenzie AN, Huffnagle GB (2005) Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: role of host genetics, antigen, and interleukin-13. Infect Immun 73:30–38PubMedPubMedCentralCrossRefGoogle Scholar
  80. Nucci M, Anaissie E (2001) Revisiting the source of candidemia: skin or gut? Clin Infect Dis 33:1959–1967PubMedCrossRefGoogle Scholar
  81. Park HK, Ha MH, Park SG, Kim MN, Kim BJ, Kim W (2012) Characterization of the fungal microbiota (mycobiome) in healthy and dandruff-afflicted human scalps. PLoS One 7:e32847PubMedPubMedCentralCrossRefGoogle Scholar
  82. Peleg AY, Tampakakis E, Fuchs BB, Eliopoulos GM, Moellering RC, Mylonakis E (2008) Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans. Proc Natl Acad Sci USA 105:14585–14590PubMedPubMedCentralCrossRefGoogle Scholar
  83. Peleg AY, Hogan DA, Mylonakis E (2010) Medically important bacterial-fungal interactions. Nat Rev Microbiol 8:340–349PubMedCrossRefGoogle Scholar
  84. Peters BM, Palmer GE, Nash AK, Lilly EA, Fidel PL Jr, Noverr MC (2014) Fungal morphogenetic pathways are required for the hallmark inflammatory response during Candida albicans vaginitis. Infect Immun 82:532–543PubMedPubMedCentralCrossRefGoogle Scholar
  85. Pfaller M, Neofytos D, Diekema D, Azie N, Meier-Kriesche HU, Quan SP, Horn D (2012) Epidemiology and outcomes of candidemia in 3648 patients: data from the prospective antifungal therapy (PATH alliance) registry, 2004–2008. Diagn Microbiol Infect Dis 74:323–331PubMedCrossRefGoogle Scholar
  86. Prohic A, Ozegovic L (2007) Malassezia species isolated from lesional and non-lesional skin in patients with pityriasis versicolor. Mycoses 50:58–63PubMedCrossRefGoogle Scholar
  87. Richard ML, Lamas B, Liguori G, Hoffmann TW, Sokol H (2015) Gut fungal microbiota: the Yin and Yang of inflammatory bowel disease. Inflamm Bowel Dis 21:656–665PubMedCrossRefGoogle Scholar
  88. Roetzer A, Gabaldón T, Schüller C (2011) From Saccharomyces cerevisiae to Candida glabrata in a few easy steps: important adaptations for an opportunistic pathogen. FEMS Microbiol Lett 314:1–9PubMedPubMedCentralCrossRefGoogle Scholar
  89. Roth RR, James WD (1988) Microbial ecology of the skin. Annu Rev Microbiol 42:441–464PubMedCrossRefGoogle Scholar
  90. Samuelsen ABC, Schrezenmeir J, Knutsen SH (2014) Effects of orally administered yeast-derived beta-glucans: a review. Mol Nutr Food Res 58:183–193PubMedCrossRefGoogle Scholar
  91. Saunte DM, Tarazooie B, Arendrup MC, de Hoog GS (2012) Black yeast-like fungi in skin and nail: it probably matters. Mycoses 55:161–167PubMedGoogle Scholar
  92. Schommer NN, Gallo RL (2013) Structure and function of the human skin microbiome. Trends Microbiol 21:660–668PubMedPubMedCentralCrossRefGoogle Scholar
  93. Seibold F, Stich O, Hufnagl R, Kamil S, Scheurlen M (2001) Anti-Saccharomyces cerevisiae antibodies in inflammatory bowel disease: a family study. Scand J Gastroenterol 36:196–201PubMedCrossRefGoogle Scholar
  94. Shirtliff ME, Peters BM, Jabra-Rizk MA (2009) Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol Lett 299:1–8PubMedPubMedCentralCrossRefGoogle Scholar
  95. Sobel JD (2007) Vulvovaginal candidosis. Lancet 369:1961–1971PubMedCrossRefGoogle Scholar
  96. Sokol H, Leducq V, Aschard H, Pham HP, Jegou S, Landman C, Cohen D, Liguori G, Bourrier A, Nion-Larmurier I, Cosnes J, Seksik P, Langella P, Skurnik D, Richard ML, Beaugerie L (2017) Fungal microbiota dysbiosis in IBD. Gut 66:1039–1048PubMedCrossRefGoogle Scholar
  97. Standaert-Vitse A, Jouault T, Vandewalle P, Mille C, Seddik M, Sendid B, Mallet JM, Colombel JF, Poulain D (2006) Candida albicans is an immunogen for anti-Saccharomyces cerevisiae antibody markers of Crohn’s disease. Gastroenterology 130:1764–1775PubMedCrossRefGoogle Scholar
  98. Stier H, Ebbeskotte V, Gruenwald J (2014) Immune-modulatory effects of dietary yeast beta-1,3/1,6-D-glucan. Nutr J 13:38PubMedPubMedCentralCrossRefGoogle Scholar
  99. Strati F, Di Paola M, Stefanini I, Albanese D, Rizzetto L, Lionetti P, Calabrò A, Jousson O, Donati C, Cavalieri D, De Filippo C (2016) Age and gender affect the composition of fungal population of the human gastrointestinal tract. Front Microbiol 7:1227PubMedPubMedCentralCrossRefGoogle Scholar
  100. Sugita T, Yamazaki T, Makimura K, Cho O, Yamada S, Ohshima H, Mukai C (2016) Comprehensive analysis of the skin fungal microbiota of astronauts during a half-year stay at the international space station. Med Mycol 54:232–239PubMedCrossRefGoogle Scholar
  101. Suhr M, Hallen-Adams HE (2015) The human gut mycobiome: pitfalls and potentials – a mycologist’s perspective. Mycologia 107:1057–1073PubMedCrossRefGoogle Scholar
  102. Suhr MJ, Banjara N, Hallen-Adams HE (2016) Sequence-based methods for detecting and evaluating the human gut mycobiome. Lett Appl Microbiol 62:209–215PubMedCrossRefGoogle Scholar
  103. Tang J, Iliev ID, Brown J, Underhill DM, Funari VA (2015) Mycobiome: approaches to analysis of intestinal fungi. J Immunol Methods 421:112–121PubMedPubMedCentralCrossRefGoogle Scholar
  104. Tati S, Davidow P, McCall A, Hwang-Wong E, Rojas IG, Cormack B, Edgerton M (2016) Candida glabrata binding to Candida albicans hyphae enables its development in oropharyngeal candidiasis. PLoS Pathog 12:e1005522PubMedPubMedCentralCrossRefGoogle Scholar
  105. Tipton L, Ghedin E, Morris A (2017) The lung mycobiome in the next-generation sequencing era. Virulence 8:334–341PubMedCrossRefGoogle Scholar
  106. Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249PubMedCrossRefGoogle Scholar
  107. Tyc KM, Herwald SE, Hogan JA, Pierce JV, Klipp E, Kumamoto C (2016) The game theory of Candida albicans colonisation dynamics reveals host-status responsive gene expression. BMC Syst Biol 10:20PubMedPubMedCentralCrossRefGoogle Scholar
  108. Underhill DM, Iliev ID (2013) Fungal mycobiome as probiotics, diagnostics and therapeutics. International Application No. PCT/US2013/038466Google Scholar
  109. Underhill DM, Iliev ID (2014) The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol 14:405–416PubMedPubMedCentralCrossRefGoogle Scholar
  110. Underhill DM, Pearlman E (2015) Immune interactions with pathogenic and commensal fungi: a two-way street. Immunity 43:845–858PubMedPubMedCentralCrossRefGoogle Scholar
  111. van Woerden HC, Gregory C, Brown R, Marchesi JR, Hoogendoorn B, Matthews IP (2013) Differences in fungi present in induced sputum samples from asthma patients and non-atopic controls: a community based case control study. BMC Infect Dis 13:69PubMedPubMedCentralCrossRefGoogle Scholar
  112. Wade WG (2013) The oral microbiome in health and disease. Pharmacol Res 69:137–143PubMedCrossRefGoogle Scholar
  113. Wang ZK, Yang YS, Stefka AT, Sun G, Peng LH (2014) Fungal microbiota and digestive diseases. Aliment Pharmacol Ther 39:751–766PubMedCrossRefGoogle Scholar
  114. Wheeler ML, Limon JJ, Bar AS, Leal CA, Gargus M, Tang J, Brown J, Funari VA, Wang HL, Crother TR, Arditi M, Underhill DM, Iliev ID (2016) Immunological consequences of intestinal fungal dysbiosis. Cell Host Microbe 19:865–873PubMedPubMedCentralCrossRefGoogle Scholar
  115. White BA, Creedon DJ, Nelson KE, Wilson BA (2011) The vaginal microbiome in health and disease. Trends Endocrinol Metab 22:389–393PubMedPubMedCentralCrossRefGoogle Scholar
  116. Xu H, Sobue T, Thompson A, Xie Z, Poon K, Ricker A, Cervantes J, Diaz PI, Dongari-Bagtzoglou A (2013) Streptococcal co-infection augments Candida pathogenicity by amplifying the mucosal inflammatory response. Cell Microbiol 16:214–231PubMedPubMedCentralCrossRefGoogle Scholar
  117. Young G, Resca HG, Sullivan MT (1951) The yeasts of the normal mouth and their relation to salivary acidity. J Dent Res 30:426–430PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Pharmacy and Biomolecular SciencesUniversity of BrightonBrightonUK
  2. 2.Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaLisbonPortugal
  3. 3.Mycothèque de l’Université catholique de Louvain (BCCM/MUCL), Earth and Life Institute, Applied Microbiology, Laboratory of MycologyUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations