Mutualism in Yeasts

  • Moritz MittelbachEmail author
  • Rachel L. Vannette


Yeasts are often associated with macro- and microorganisms, but these interactions can vary from mutually beneficial to antagonistic. In this chapter, we review mutually beneficial interactions involving yeasts. First, we describe some ways in which yeasts may benefit from the metabolism or actions of other species. Next, we describe the characteristics of yeasts that could benefit other organisms, including rapid growth, high nutrient content, detoxification, and the production of metabolic by-products. We highlight in detail a few of the types of interactions that most resemble mutualisms between yeasts and other organisms for: (1) yeast interactions with animals (vertebrate and invertebrate), (2) yeast interactions with plants, (3) yeast interactions with other microorganisms, and (4) multispecies interactions, including pollination. We necessarily focus on recently published work. We indicate where good evidence exists for mutualism and where more results will be required to demonstrate mutual benefit. Finally, we conclude the chapter with directions for future work, including how current technological approaches may be combined with manipulative experiments to allow rigorous tests of the mutualistic nature of yeast associations.


Community ecology Dispersal Indirect mutualism Syntrophy Yeast-insect interactions 



We apologize to the authors of relevant work that we were unable to cite in the limited space here. We are grateful to those who provided helpful feedback, particularly Ash Zemenick and the rest of the Vannette lab. RLV would like to acknowledge support from the UC Davis Department of Entomology and Nematology and Hatch project 1010540.


  1. Adams AS, Six DL, Adams SM, Holben WE (2008) In vitro interactions between yeasts and bacteria and the fungal symbionts of the mountain pine beetle (Dendroctonus ponderosae). Microb Ecol 56:460–466PubMedCrossRefGoogle Scholar
  2. Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14:1–31CrossRefGoogle Scholar
  3. Anagnostou C, Dorsch M, Rohlfs M (2010a) Influence of dietary yeasts on Drosophila melanogaster life-history traits. Entomol Exp Appl 136:1–11CrossRefGoogle Scholar
  4. Anagnostou C, LeGrand EA, Rohlfs M (2010b) Friendly food for fitter flies? Influence of dietary microbial species on food choice and parasitoid resistance in Drosophila. Oikos 119:533–541CrossRefGoogle Scholar
  5. Arcuri SL, Pagnocca FC, Da Paixão Melo WG, Nagamoto NS, Komura DL, Rodrigues A (2014) Yeasts found on an ephemeral reproductive caste of the leaf-cutting ant Atta sexdens rubropilosa. A van Leeuwenhoek 106:475–487CrossRefGoogle Scholar
  6. Becher PG, Flick G, Rozpędowska E, Schmidt A, Hagman A, Lebreton S, Larsson MC, Hansson BS, Piškur J, Witzgall P, Bengtsson M (2012) Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol 26:822–828CrossRefGoogle Scholar
  7. Beck JJ, Vannette RL (2017) Harnessing insect-microbe chemical communications to control insect pests of agricultural systems. J Agric Food Chem 65:23–28PubMedCrossRefGoogle Scholar
  8. Begon M (1982) Yeasts and Drosophila. In: Ashburner M, Carson HL, Thompson JN (eds) The genetics and biology of Drosophila, vol 3B. Academic Press, New YorkGoogle Scholar
  9. Blackwell M (2017) Yeast in insects and other invertebrates. In: Buzzini P, Lachance MA, Yurkov A (eds) Yeasts in natural ecosystems: diversity. Springer International Publishing, pp 397–433Google Scholar
  10. Blankenship JR, Mitchell AP (2006) How to build a biofilm: a fungal perspective. Curr Opin Microbiol 9:588–594PubMedCrossRefGoogle Scholar
  11. Boby VU, Balakrishna AN, Bagyaraj DJ (2008) Interaction between Glomus mosseae and soil yeasts on growth and nutrition of cowpea. Microbiol Res 163:693–700CrossRefPubMedGoogle Scholar
  12. Botes A, Boekhout T, Hagen F, Vismer H, Swart J, Botha A (2009) Growth and mating of Cryptococcus neoformans var. grubii on woody debris. Microb Ecol 57:757–765PubMedCrossRefGoogle Scholar
  13. Boucher DH, James S, Keeler KH (1982) The ecology of mutualism. Annu Rev Ecol Syst 13:315–347CrossRefGoogle Scholar
  14. Boundy-Mills K (2006) Methods for investigating yeast biodiversity. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 67–100CrossRefGoogle Scholar
  15. Bronstein JL (1994) Our Current understanding of mutualism. Q Rev Biol 69:31–51CrossRefGoogle Scholar
  16. Brysch-Herzberg M (2004) Ecology and taxonomy of yeasts associated with the plant-bumblebee mutualism in central Europe. FEMS Microbiol Ecol 50:87–100PubMedCrossRefGoogle Scholar
  17. Burgaud G, Woehlke S, Rédou V, Orsi W, Beaudoin D, Barbier G, Biddle JF, Edgcomb VP (2013) Deciphering the presence and activity of fungal communities in marine sediments using a model estuarine system. Aquat Microb Ecol 70:45–62CrossRefGoogle Scholar
  18. Burmølle M, Ren D, Bjarnsholt T, Sørensen SJ (2014) Interactions in multispecies biofilms: do they actually matter? Trends Microbiol 22:84–91PubMedCrossRefGoogle Scholar
  19. Buser CC, Newcomb RD, Gaskett AC, Goddard MR (2014) Niche construction initiates the evolution of mutualistic interactions. Ecol Lett 17:1257–1264PubMedCrossRefGoogle Scholar
  20. Cafarchia C, Camarda A, Romito D, Campolo M, Quaglia NC, Tullio D, Otranto D (2006) Occurrence of yeasts in cloacae of migratory birds. Mycopathologia 161:229–234PubMedCrossRefGoogle Scholar
  21. Christiaens JF, Franco LM, Cools TL, de Meester L, Michiels J, Wenseleers T, Hassan BA, Yaksi E, Verstrepen KJ (2014) The fungal aroma gene ATF1 promotes dispersal of yeast cells through insect vectors. Cell Rep 9:425–432PubMedCrossRefGoogle Scholar
  22. Clarke RT, Di Menna ME (1961) Yeasts from the bovine rumen. J Gen Microbiol 25:113–117PubMedCrossRefGoogle Scholar
  23. Cloete KJ, Valentine AJ, Stander MA, Blomerus LM, Botha A (2009) Evidence of symbiosis between the soil yeast Cryptococcus laurentii and a sclerophyllous medicinal shrub, Agathosma betulina (berg.) pillans. Microb Ecol 57:624–632PubMedCrossRefGoogle Scholar
  24. Coluccio AE, Rodriguez RK, Kernan MJ, Neiman AM (2008) The yeast spore wall enables spores to survive passage through the digestive tract of Drosophila. PLoS One 3:e2873PubMedPubMedCentralCrossRefGoogle Scholar
  25. Crowley PH, Cox JJ (2011) Intraguild mutualism. Trends Ecol Evol 26:627–633PubMedCrossRefGoogle Scholar
  26. Currie CR, Poulsen M, Mendenhall J, Boomsma JJ, Billen J (2006) Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 311:81–83PubMedCrossRefGoogle Scholar
  27. Davis TS (2014) The ecology of yeasts in the bark beetle holobiont: a century of research revisited. Microb Ecol 69:723–732PubMedCrossRefGoogle Scholar
  28. Davis TS, Hofstetter RW, Foster JT, Foote NE, Keim P (2011) Interactions between the yeast Ogataea pini and filamentous fungi associated with the western pine beetle. Microb Ecol 61:626–634PubMedCrossRefGoogle Scholar
  29. Davis TS, Boundy-Mills K, Landolt PJ (2012) Volatile emissions from an epiphytic fungus are semiochemicals for eusocial wasps. Microb Ecol 64:1056–1063PubMedCrossRefGoogle Scholar
  30. Deák T (2006) Environmental factors influencing yeasts. In: Rosa CA, Gabor P (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 155–174CrossRefGoogle Scholar
  31. Do Carmo-Sousa L (1969) Distribution of yeasts in nature. In: Rose AH, Harrison JS (eds) The yeasts, 1st edn. Academic Press, London, pp 79–105Google Scholar
  32. Domart-Coulon IJ, Sinclair CS, Hill RT, Tambutté S, Puverel S, Ostrander GK (2004) A basidiomycete isolated from the skeleton of Pocillopora damicornis (Scleractinia) selectively stimulates short-term survival of coral skeletogenic cells. Mar Biol 144:583–592CrossRefGoogle Scholar
  33. Douglas AE (2016) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34CrossRefGoogle Scholar
  34. Drinnenberg I, Fink GR, Bartel DP (2011) Compatibility with killer explains the rise of RNAi-deficient fungi. Science 333:1592PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dyer AG, Whitney HM, Arnold SEJ, Glover BJ, Chittka L (2006) Behavioural ecology: bees associate warmth with floral colour. Nature 442:525PubMedCrossRefGoogle Scholar
  36. Ebbert MA, Marlowe JL, Burkholder JJ (2003) Protozoan and intracellular fungal gut endosymbionts in Drosophila: prevalence and fitness effects of single and dual infections. J Invertebr Pathol 83:37–45PubMedCrossRefGoogle Scholar
  37. Eisikowitch D, Lachance M-A, Kevan PG, Willis S, Collins-Thompson DL (1990) The effect of the natural assemblage of microorganisms and selected strains of the yeast Metschnikowia reukaufii in controlling the germination of pollen of the common milkweed Asclepias syriaca. Can J Bot 68:1163–1165CrossRefGoogle Scholar
  38. Elias S, Banin E (2012) Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev 36:990–1004PubMedCrossRefGoogle Scholar
  39. El-Tarabily KA (2004) Suppression of Rhizoctonia solani diseases of sugar beet by antagonistic and plant growth-promoting yeasts. J Appl Microbiol 96:69–75PubMedCrossRefGoogle Scholar
  40. Fanning S, Mitchell AP (2012) Fungal biofilms. PLoS Pathog 8:1–4CrossRefGoogle Scholar
  41. Farré-Armengol G, Filella I, Llusia J, Peñuelas J (2016) Bidirectional interaction between phyllospheric microbiotas and plant volatile emissions. Trends Plant Sci 21:854–860PubMedCrossRefGoogle Scholar
  42. Fleet GH (2006) The commercial and community significance of yeasts in food and beverage production. In: Querol A, Fleet GH (eds) Yeasts in food and beverages. Springer, Berlin, pp 2–12Google Scholar
  43. Flórez LV, Biedermann PHW, Engl T, Kaltenpoth M (2015) Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep 32:904–936PubMedCrossRefGoogle Scholar
  44. Fokkema NJ, Riphagen I, Poot RJ, de Jong C (1983) Aphid honeydew, a potential stimulant of Cochliobolus sativus and Septoria nodorum and the competitive role of saprophytic mycoflora. Trans Br Mycol Soc 81:355–363CrossRefGoogle Scholar
  45. Fonseca A, Inácio JJS (2006) Phylloplane yeasts. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 263–301CrossRefGoogle Scholar
  46. Fracchia S, Godeas A, Scervino JM, Sampedro I, Ocampo JA, García-Romera I (2003) Interaction between the soil yeast Rhodotorula mucilaginosa and the arbuscular mycorrhizal fungi Glomus mosseae and Gigaspora rosea. Soil Biol Biochem 35:701–707CrossRefGoogle Scholar
  47. Francesca N, Carvalho C, Sannino C, Guerreiro MA, Almeida PM, Settanni L, Massa B, Sampaio JP, Moschetti G (2014) Yeasts vectored by migratory birds collected in the Mediterranean island of Ustica and description of Phaffomyces usticensis f.a. sp. nov., a new species related to the cactus ecoclade. FEMS Yeast Res 14:910–921PubMedCrossRefGoogle Scholar
  48. Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75:583–609PubMedPubMedCentralCrossRefGoogle Scholar
  49. Galkiewicz JP, Stellick SH, Gray MA, Kellogg CA (2012) Cultured fungal associates from the deep-sea coral Lophelia pertusa. Deep Res Part I Oceanogr Res Pap 67:12–20CrossRefGoogle Scholar
  50. Ganter P (2006) Yeast and invertebrate associations. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 303–370CrossRefGoogle Scholar
  51. Gatesoupe FJ (2007) Live yeasts in the gut: natural occurrence, dietary introduction, and their effects on fish health and development. Aquaculture 267:20–30CrossRefGoogle Scholar
  52. Gilbert DG (1980) Dispersal of yeasts and bacteria by Drosophilia in a temperate forest. Oecologia 46:135–137PubMedCrossRefGoogle Scholar
  53. Glushakova AM, Chernov IY (2010) Seasonal dynamics of the structure of epiphytic yeast communities. Microbiology 79:830–839CrossRefGoogle Scholar
  54. Goddard M, Godfray H, Burt A (2005) Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434:636–640PubMedCrossRefGoogle Scholar
  55. Golonka AM, Johnson BO, Freeman J, Hinson DW (2014) Impact of nectarivorous yeasts on Silene caroliniana’s scent. East Biol 3:1–26CrossRefGoogle Scholar
  56. Golubev WI (2006) Antagonistic interactions among yeasts. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 197–219CrossRefGoogle Scholar
  57. Good AP, Gauthier M-PL, Vannette RL, Fukami T (2014) Honey bees avoid nectar colonized by three bacterial species, but not by a yeast species, isolated from the bee gut. PLoS One 9:e86494PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hagler AN, Ahearn DG (1987) Ecology of aquatic yeasts. In: Rose AH, Harrison JS (eds) The yeast, 2nd edn. Academic Press, London, pp 181–205Google Scholar
  59. Herrera CM, Medrano M (2016) Pollination consequences of mimicking intrafloral microbial warming in an early-blooming herb. Flora 232:142–149CrossRefGoogle Scholar
  60. Herrera CM, Pozo MI (2010) Nectar yeasts warm the flowers of a winter-blooming plant. Proc R Soc B-Biol Sci 277:1827–1834CrossRefGoogle Scholar
  61. Herrera CM, Pozo MI, Bazaga P (2011) Clonality, genetic diversity and support for the diversifying selection hypothesis in natural populations of a flower-living yeast. Mol Ecol 20:4395–4407PubMedCrossRefGoogle Scholar
  62. Herrera CM, Pozo MI, Medrano M (2013) Yeasts in nectar of an early-blooming herb: sought by bumble bees, detrimental to plant fecundity. Ecology 94:273–279PubMedCrossRefGoogle Scholar
  63. Hoang D, Kopp A, Chandler JA (2015) Interactions between Drosophila and its natural yeast symbionts-Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship? PeerJ 3:e1116PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hoek TA, Axelrod K, Biancalani T, Yurtsev EA, Liu J, Gore J (2016) Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLoS Biol 14:e1002540PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, Lewis JD, Bushman FD (2013) Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 8:e66019PubMedPubMedCentralCrossRefGoogle Scholar
  66. Hofstetter RW, Cronin JT, Klepzig KD, Moser JC, Ayres MP (2006) Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle. Oecologia 147:679–691PubMedCrossRefGoogle Scholar
  67. Hom EFY, Murray AW (2014) Plant-fungal ecology. Niche engineering demonstrates a latent capacity for fungal-algal mutualism. Science 345:94–98PubMedPubMedCentralCrossRefGoogle Scholar
  68. Huffnagle GB, Noverr MC (2013) The emerging world of the fungal microbiome. Trends Microbiol 21:334–341PubMedPubMedCentralCrossRefGoogle Scholar
  69. Hunt DWA, Borden JH (1990) Conversion of verbenols to verbenone by yeasts isolated from Dendroctonus ponderosae (Coleoptera: Scolytidae). J Chem Ecol 16:1385–1397PubMedCrossRefGoogle Scholar
  70. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–586CrossRefGoogle Scholar
  71. Kircher H (1982) Chemical composition of cacti and its relationship to Sonoran Desert Drosophila. In: Barker JSF, Starmer WT (eds) Ecological genetics and evolution: the cactus–Drosophila model system. Academic Press, Sydney, pp 143–158Google Scholar
  72. Knop M (2006) Evolution of the hemiascomycete yeasts: on life styles and the importance of inbreeding. BioEssays 28:696–708PubMedCrossRefGoogle Scholar
  73. Kurtzman CP, Fell JW (2006) Yeast systematics and phylogeny – implications of molecular identification methods for studies in ecology. In: Péter G, Rosa C (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 11–30CrossRefGoogle Scholar
  74. Kurtzman CP, Fell JW, Boekhout T (eds) (2011) The yeasts, a taxonomic study, vol 3, 5th edn. Amsterdam, ElsevierGoogle Scholar
  75. Lachance M-A (2016) Metschnikowia: half tetrads, a regicide, and the fountain of youth. Yeast 33:563–574CrossRefGoogle Scholar
  76. Lachance M-A, Nair P, Lo P (1994) Mating in the heterothallic haploid yeast Clavispora opuntiae, with special reference to mating type imbalances in local populations. Yeast 10:895–906PubMedCrossRefGoogle Scholar
  77. Lachance M-A, Bowles JM, Starmer WT (2003) Geography and niche occupancy as determinants of yeast biodiversity: the yeast-insect-morning glory ecosystem of Kīpuka Puaulu, Hawai’i. FEMS Yeast Res 4:105–111PubMedCrossRefGoogle Scholar
  78. Lam SSTH, Howell KS (2015) Drosophila-associated yeast species in vineyard ecosystems. FEMS Microbiol Lett 362:fnv170Google Scholar
  79. Lange L, Grell MN (2014) The prominent role of fungi and fungal enzymes in the ant-fungus biomass conversion symbiosis. Appl Microbiol Biotechnol 98:4839–4851PubMedCrossRefGoogle Scholar
  80. Last FT, Price D (1969) Yeasts associated with living plants and their environs. In: Rose A, Harrison J (eds) The yeasts, vol 1. Academic Press, London, pp 183–218Google Scholar
  81. Limtong S, Koowadjanakul N (2012) Yeasts from phylloplane and their capability to produce indole-3-acetic acid. World J Microbiol Biotechnol 28:3323–3335PubMedCrossRefGoogle Scholar
  82. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schaberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459PubMedCrossRefGoogle Scholar
  83. Lipke H, Fraenkel G (1956) Insect nutrition. Annu Rev Entomol 1:17–44CrossRefGoogle Scholar
  84. Little AEF, Currie CR (2008) Black yeast symbionts compromise the efficiency of antibiotic defenses in fungus-growing ants. Ecology 89:1216–1222PubMedCrossRefGoogle Scholar
  85. Lund A (1954) Studies on the ecology of yeasts. Munksgaard, CopenhagenGoogle Scholar
  86. Lund A (1974) Yeasts and moulds in the bovine rumen. J Gen Microbiol 81:453–462PubMedCrossRefGoogle Scholar
  87. MacWilliam IC (1959) A survey of the antibiotic powers of yeasts. J Gen Microbiol 21:410–414PubMedCrossRefGoogle Scholar
  88. Martin D, Bedel de Buzareinques F, Barry P, Derridj S (1993) An epiphytic yeast (Sporobolomyces roseus) influencing in oviposition preference of the European corn borer (Ostrinia nubilalis) on maize. Acta Oecol 14:563–574Google Scholar
  89. McCormick SP (2013) Microbial detoxification of mycotoxins. J Chem Ecol 39:907–918PubMedCrossRefGoogle Scholar
  90. Mittelbach M, Yurkov AM, Stoll R, Begerow D (2016) Inoculation order of nectar-borne yeasts opens a door for transient species and changes nectar rewarded to pollinators. Fungal Ecol 22:90–97CrossRefGoogle Scholar
  91. Moller L, Lerm B, Botha A (2016) Interactions of arboreal yeast endophytes: an unexplored discipline. Fungal Ecol 22:73–82CrossRefGoogle Scholar
  92. Molnar O, Schatzmayr G, Fuchs E, Prillinger H (2004) Trichosporon mycotoxinivorans sp. nov., a new yeast species useful in biological detoxification of various mycotoxins. Syst Appl Microbiol 27:661–671PubMedCrossRefGoogle Scholar
  93. Moran N (2007) Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci U S A 104:8627–8633PubMedPubMedCentralCrossRefGoogle Scholar
  94. Mueller UG, Rehner SA, Schultz TR (1998) The evolution of agriculture in ants. Science 281:2034–2038PubMedCrossRefGoogle Scholar
  95. Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR (2005) The evolution of agriculture in insects. Annu Rev Ecol Evol Syst 36:563–595CrossRefGoogle Scholar
  96. Nagahama T (2006) Yeast biodiversity in freshwater, marine and deep-sea environments. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 241–262CrossRefGoogle Scholar
  97. Nassar AH, El-Tarabily KA, Sivasithamparam K (2005) Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol Fertil Soils 42:97–108CrossRefGoogle Scholar
  98. Peay KG, Belisle M, Fukami T (2012) Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proc R Soc B Biol Sci 279:749–758CrossRefGoogle Scholar
  99. Peters BM, Jabra-Rizk MA, Scheper MA, Leid JG, Costerton JW, Shirtliff ME (2010) Microbial interactions and differential protein expression in Staphylococcus aureus-Candida albicans dual-species biofilms. FEMS Immunol Med Microbiol 59:493–503PubMedPubMedCentralCrossRefGoogle Scholar
  100. Phaff HJ, Starmer WT (1987) Yeasts associated with plants, insects and soil. In: Rose AH, Harrison J (eds) The yeasts, 2nd edn, vol I. Academic Press, London, pp 123–180Google Scholar
  101. Phaff HJ, Miller MW, Mrak EM (1978) The life of yeasts, 2nd edn. Harvard University Press, CambridgeCrossRefGoogle Scholar
  102. Phaff HJ, Miranda M, Starmer WT, Tredick J, Barker JSF (1986) Clavispora opuntiae, a new heterothallic yeast occurring in necrotic tissue of Opuntia species. Int J Syst Bacteriol 36:372–379CrossRefGoogle Scholar
  103. Poonlaphdecha S, Ribas A (2016) Yeasts in amphibians are common: isolation and the first molecular characterization from Thailand. Acta Herpetol 11:81–84Google Scholar
  104. Prajapati VS, Purohit HJ, Raje DV, Parmar N, Patel AB, Jones OAH, Joshi CG (2016) The effect of a high-roughage diet on the metabolism of aromatic compounds by rumen microbes: a metagenomic study using Mehsani buffalo (Bubalus bubalis). Appl Microbiol Biotechnol 100:1319–1331CrossRefPubMedGoogle Scholar
  105. Raggi P, Lopez P, Diaz A, Carrasco D, Silva A, Velez A, Opazo R, Magne F, Navarrete PA (2014) Debaryomyces hansenii and Rhodotorula mucilaginosa comprised the yeast core gut microbiota of wild and reared carnivorous salmonids, croaker and yellowtail. Environ Microbiol 16:2791–2803PubMedCrossRefGoogle Scholar
  106. Ren D, Madsen JS, Sørensen SJ, Burmølle M (2015) High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation. ISMEJ 9:81–89CrossRefGoogle Scholar
  107. Reuter M, Bell G, Greig D (2007) Increased outbreeding in yeast in response to dispersal by an insect vector. Curr Biol 17:81–83CrossRefGoogle Scholar
  108. Reynolds TB, Fink GR (2001) Bakers’ yeast, a model for fungal biofilm formation. Science (New York, NY) 291:878–881CrossRefGoogle Scholar
  109. Rodrigues A, Cable RN, Mueller UG, Bacci M, Pagnocca FC (2009) Antagonistic interactions between garden yeasts and microfungal garden pathogens of leaf-cutting ants. A van Leeuwenhoek, Int J Gen Mol Microbiol 96:331–342CrossRefGoogle Scholar
  110. Rohlfs M, Kürschner L (2010) Saprophagous insect larvae, Drosophila melanogaster, profit from increased species richness in beneficial microbes. J Appl Entomol 134:667–671Google Scholar
  111. Sang JH (1978) Nutritional requirements of Drosophila. In: Ashburner M (ed) Genetics and biology of Drosophila. Academic Press, London, pp 159–192Google Scholar
  112. Schaeffer RN, Irwin RE (2014) Yeasts in nectar enhance male fitness in a montane perennial herb. Ecology 95:1792–1798PubMedCrossRefGoogle Scholar
  113. Schaeffer RN, Mei YZ, Andicoechea J, Manson JS, Irwin RE (2016) Consequences of a nectar yeast for pollinator preference and performance. Funct Ecol 31:613–621CrossRefGoogle Scholar
  114. Schäfer A, Konrad R, Kuhnigk T, Kämpfer P, Hertel H, König H (1996) Hemicellulose-degrading bacteria and yeasts from the termite gut. J Appl Bacteriol 80:471–478PubMedCrossRefGoogle Scholar
  115. Schatzmayr G, Heidler D, Fuchs E, Nitsch S, Mohnl M, Täiubel M, Loibner AP, Braun R, Binder EM (2003) Investigation of different yeast strains for the detoxification of ochratoxin a. Mycotoxin Res 19:124–128PubMedCrossRefGoogle Scholar
  116. Schmitt MJ, Breinig F (2006) Yeast viral killer toxins: lethality and self-protection. Nat Rev Microbiol 4:212–221PubMedCrossRefGoogle Scholar
  117. Singh CS, Kapoor A, Wange SS (1991) The enhancement of root colonisation of legumes by vesicular-arbuscular mycorrhizal (VAM) fungi through the inoculation of the legume seed with commercial yeast (Saccharomyces cerevisiae). Plant Soil 131:129–133CrossRefGoogle Scholar
  118. Sipiczki M (2006) Metschnikowia strains isolated from botrytized grapes antagonize fungal and bacterial growth by iron depletion. Appl Environ Microbiol 72:6716–6724PubMedPubMedCentralCrossRefGoogle Scholar
  119. Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:1–13CrossRefGoogle Scholar
  120. Stamps JA, Yang LH, Morales VM, Boundy-Mills KL (2012) Drosophila regulate yeast density and increase yeast community similarity in a natural substrate. PLoS One 7:e42238PubMedPubMedCentralCrossRefGoogle Scholar
  121. Stanton ML (2003) Interacting guilds: moving beyond the pairwise perspective on mutualisms. Am Nat 162:S10–S23PubMedCrossRefGoogle Scholar
  122. Starmer WT, Aberdeen V (1990) The nutritional importance of pure and mixed cultures of yeasts in the development of Drosophila mulleri larvae in Opuntia tissues and its relationship to host plant shifts. In: Monographs in evolutionary biology: ecological and evolutionary genetics of Drosophila. Springer, Berlin, pp 485–489Google Scholar
  123. Starmer WT, Fogleman JC (1986) Coadaptation of Drosophila and yeasts in their natural habitat. J Chem Ecol 12:1037–1055PubMedCrossRefGoogle Scholar
  124. Starmer WT, Lachance M-A (2011) Yeast ecology. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 65–83CrossRefGoogle Scholar
  125. Starmer WT, Peris F, Fontdevila A (1988) The transmission of yeasts by Drosophila buzzatii during courtship and mating. Anim Behav 36:1691–1695CrossRefGoogle Scholar
  126. Stefanini I, Dapporto L, Legras J-L, Calabretta A, Di Paola M, De Filippo C, Viola R, Capretti P, Polsinelli M, Turillazzi S, Cavalieri D (2012) Role of social wasps in Saccharomyces cerevisiae ecology and evolution. Proc Natl Acad Sci 109:13398–13403PubMedPubMedCentralCrossRefGoogle Scholar
  127. Stefanini I, Dapporto L, Berná L, Polsinelli M, Turillazzi S, Cavalieri D (2016) Social wasps are a Saccharomyces mating nest. Proc Natl Acad Sci 113:2–6CrossRefGoogle Scholar
  128. Stensmyr MC, Dweck HKM, Farhan A, Ibba I, Strutz A, Mukunda L, Linz J, Grabe V, Steck K, Lavista-Llanos S, Wicher D, Sachse S, Knaden M, Becher PG, Seki Y, Hansson BS (2012) A conserved dedicated olfactory circuit for detecting harmful microbes in drosophila. Cell 151:1345–1357PubMedCrossRefGoogle Scholar
  129. Stökl J, Strutz A, Dafni A, Svatos A, Doubsky J, Knaden M, Sachse S, Hansson BS, Stensmyr MC (2010) A deceptive pollination system targeting drosophilids through olfactory mimicry of yeast. Curr Biol 20:1846–1852CrossRefPubMedGoogle Scholar
  130. Streletskii RA, Kachalkin AV, Glushakova AM, Demin VV, Chernov IY (2016) Quantitative determination of indole-3-acetic acid in yeasts using high performance liquid chromatography—tandem mass spectrometry. Microbiology 85:727–773CrossRefGoogle Scholar
  131. Tedersoo L, Lindahl B (2016) Fungal identification biases in microbiome projects. Environ Microbiol Rep 8:1–20CrossRefGoogle Scholar
  132. Tedersoo L, Anslan S, Bahram M, Põlme S, Riit T, Liiv I, Kõljalg U, Kisand V, Nilsson H, Hildebrand F, Bork P, Abarenkov K (2015) Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10:1–43CrossRefGoogle Scholar
  133. Torto B, Boucias DG, Arbogast RT, Tumlinson JH, Teal PE (2007) Multitrophic interaction facilitates parasite-host relationship between an invasive beetle and the honey bee. Proc Natl Acad Sci U S A 104:8374–8378PubMedPubMedCentralCrossRefGoogle Scholar
  134. Tucker CM, Fukami T (2014) Environmental variability counteracts priority effects to facilitate species coexistence: evidence from nectar microbes. Proc Biol Sci 281:20132637PubMedPubMedCentralCrossRefGoogle Scholar
  135. Vaca I, Faúndez C, Maza F, Paillavil B, Hernández V, Acosta F, Levicán G, Martínez C, Chávez R (2013) Cultivable psychrotolerant yeasts associated with Antarctic marine sponges. World J Microbiol Biotechnol 29:183–189PubMedCrossRefGoogle Scholar
  136. Vannette RL, Fukami T (2013) Historical contingency in species interactions: towards niche-based predictions. Ecol Lett 17:115–124PubMedPubMedCentralCrossRefGoogle Scholar
  137. Vannette RL, Fukami T (2016) Nectar microbes can reduce secondary metabolites in nectar and alter effects on nectar consumption by pollinators. Ecology 97:1410–1419PubMedCrossRefGoogle Scholar
  138. Vannette RL, Gauthier M-PL, Fukami T (2013) Nectar bacteria, but not yeast, weaken a plant-pollinator mutualism. Proc Biol Sci 280:20122601PubMedPubMedCentralCrossRefGoogle Scholar
  139. Vega F, Dowd PF (2004) The role of yeasts as insect endosymbionts. In: Vega FE, Blackwell M (eds) Insect-fungal associations: ecology and evolution. Oxford University Press, London, pp 211–244Google Scholar
  140. Vishniac HS, Anderson JA, Filonow AB (1997) Assimilation of volatiles from ripe apples by Sporidiobolus salmonicolor and Tilletiopsis washingtonensis. A van Leeuwenhoek 72:201–207CrossRefGoogle Scholar
  141. Vo TL, Mueller UG, Mikheyev AS (2009) Free-living fungal symbionts (Lepiotaceae) of fungus-growing ants (Attini: Formicidae). Mycologia 101:206–210PubMedCrossRefGoogle Scholar
  142. Weber NA (1972) Gardening ants, the attines. American Philosophical Society, Philadelphia, PAGoogle Scholar
  143. Webster NS, Taylor MW (2012) Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 14:335–346PubMedCrossRefGoogle Scholar
  144. Weiser J, Wegensteiner R, Händel U, Zizka Z (2003) Infections with the ascomycete fungus Metschnikowia typographi sp. nov. in the bark beetles Ips typographus and Ips amitinus (Coleoptera, Scolytidae). Folia Microbiol (Praha) 48:611–618CrossRefGoogle Scholar
  145. Wiens F, Zitzmann A, Lachance MA, Yegles M, Pragst F, Wurst FM, von Holst D, Guan SL, Spanagel R (2008) Chronic intake of fermented floral nectar by wild treeshrews. Proc Natl Acad Sci U S A 105:10426–10431PubMedPubMedCentralCrossRefGoogle Scholar
  146. Witzgall P, Proffit M, Rozpędowska E, Becher PG, Andreadis S, Coracini M, Lindblom TUT, Ream LJ, Hagman A, Bengtsson M, Kurtzman CP, Piškur J, Knight A (2012) “This is not an apple”-yeast mutualism in codling moth. J Chem Ecol 38:949–957PubMedCrossRefGoogle Scholar
  147. Zeyl C, Bell G (1997) The advantage of sex in evolving yeast populations. Nature 388:465–468PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Plant EcologyFreie Universität BerlinBerlinGermany
  2. 2.Department of Entomology and NematologyUC DavisDavisUSA

Personalised recommendations