Yeasts as Distinct Life Forms of Fungi

  • Cletus P. KurtzmanEmail author
  • Teun Boekhout


Detection, identification, and classification of yeasts have undergone major changes since application of gene sequence analyses and genome comparisons. Development of a database of barcodes consisting of easily determined DNA sequences from domains 1 and 2 (D1/D2) of the nuclear large subunit rRNA gene and from ITS now permits many laboratories to identify species quickly and accurately, thus replacing the laborious and often inaccurate phenotypic tests previously used. Phylogenetic analysis of gene sequences is leading to a major revision of yeast systematics that will result in redefinition of nearly all genera. This new understanding of species relationships has prompted a change of rules for naming and classifying yeasts and other fungi, and these new rules were recently implemented in the International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). The use of molecular methods for species identification and the impact of Code changes on classification will be discussed.


Yeasts Taxonomy Molecular systematics Evolution 



We thank Robert Riley for providing Fig. 1.1 and Antonis Rokas and Chris Hittinger for Fig. 1.3. Figure 1.3 is based upon work supported by National Science Foundation Grant No. DEB-1442148. The mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. The USDA is an equal opportunity provider and employer.


  1. Aime MC, Matheny PB, Henk DA, Frieders EM, Nilsson RH, Piepenbring M, McLaughlin DJ, Szabo LJ, Begero D, Sampaio JP, Bauer R, Weis M, Oberwinkler F, Hibbett DS (2006) An overview of the higher-level classification of Pucciniomycotina based on combined analyses of nuclear large and small subunit rDNA sequences. Mycologia 98:896–905Google Scholar
  2. Amend A (2014) From dandruff to deep-sea vents: Malassezia-like fungi are ecologically hyper-diverse. PLoS Pathog 10:e1004277CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bandoni RJ (1995) Dimorphic heterobasidiomycetes: taxonomy and parasitism. Stud Mycol 38:13–27Google Scholar
  4. Banno I (1967) Studies on the sexuality of Rhodotorula. J Gen Appl Microbiol 13:249–251Google Scholar
  5. Batra R, Boekhout T, Guého E, Cabañes FJ, Dawson TL J Gupta AK (2005) Malassezia Baillon, emerging clinical yeasts. FEMS Yeast Res 5:1101–1113Google Scholar
  6. Bauer R, Begerow D, Sampaio JP, Weiβ M, Oberwinkler F (2006) The simple-sepatate basidiomycetes: a synopsis. Mycol Progr 5:41–66Google Scholar
  7. Begerow D, Bauer R, Oberwinkler, F (1997) Phylogenetic studies on nuclear large subunit ribosomal DNA sequences of smut fungi and related taxa. Can J Bot 75:2045–2056Google Scholar
  8. Begerow D, Bauer R, Boekhout T (2000) Phylogenetic placements of ustilaginomycetous anamorphs as deduced from nuclear LSU rDNA sequences. Mycol Res 104:53–60Google Scholar
  9. Belangér RR, Dik AJ, Menzies JG (1998) Powdery mildews: recent advances towards integrated control. In: Boland GJ, Kuykendall LD (eds) Plant-microbe interactions and biological control. Marcel Dekker, New York, pp 89–109Google Scholar
  10. Bergman A, Fernandez V, Holmström KO, Claesson BEEnroth H (2007) Rapid identification of pathogenic yeast isolates by real-time PCR and two-dimensional melting-point analysis. Eur J Clin Microbiol Infect Dis 26:813–818Google Scholar
  11. Blanz PA, Gottschalk M (1984) A comparison of 5S ribosomal RNA nucleotide sequences from smut fungi. Syst Appl Microbiol 5:518–526Google Scholar
  12. Boekhout T, Fonseca A, Batenburg-van der Vegte WH (1991) Bulleromyces genus novum (Tremellales), a teleomorph for Bullera alba, and the occurrence of mating in Bullera variabilis. Antonie van Leeuwenhoek 59:81–93Google Scholar
  13. Boekhout T, Theelen B, Houbraken J, Robert V, Scorzetti G, Gafni A, Gerson U, Sztejnberg A (2003) Novel anamorphic mite-associated fungi belonging to the ustilaginomycetes: Meira geulakonigii gen. nov., sp. nov., Meira argovae sp. nov. and Acaromyces ingoldii gen. nov., sp. nov. Int J Syst Evol Microbiol 53:1655–1664CrossRefPubMedGoogle Scholar
  14. Boekhout T, Bandoni RJ, Fell JW, Kwon-Chung KJ, Sampaio JP, Fonseca A (2011) Discussion of teleomorphic and anamorphic genera of heterobasidiomycetous yeasts. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 1339–1374Google Scholar
  15. Cain RF (1972) Evolution of the fungi. Mycologia 64(1):14CrossRefGoogle Scholar
  16. Casey GC, Dobson DW (2004) Potential of using real-time PCR-based detection of spoilage yeast in fruit juice – a preliminary study. Int J Food Microbiol 91:327–335Google Scholar
  17. Cassagne C, Cella AL, Suchon P, Normand AC, Ranque S, Piarroux R (2013) Evaluation of four pretreatment procedures for MALDI-TOF MS yeast identification in the routine clinical laboratory. Med Mycol 51:371–377Google Scholar
  18. Cendejas-Bueno E, Kolecka A, Alastruey-Izquierdo A, Theelen B, Groenewald M, Kostrzewa M, Cuenca-Estrella M, Gómez-López A, Boekhout T (2012) Reclassification of the Candida haemulonii complex as Candida haemulonii (C. haemulonii group I), C. duobushaemulonii sp. nov. (C. haemulonii group II), and C. haemulonii var. vulnera var. nov.: three multiresistant human pathogenic yeasts. J Clin Microbiol 50:3641–3651Google Scholar
  19. Chapman DD, Abercrombie DL, Douady CJ, Pikitch EK, Stanhopen MJ, Shivji MS (2003) A streamlined, bi-organelle, multiplex PCR approach to species identification: application to global conservation and trade monitoring of the great white shark. Cons Genet 4:415–425CrossRefGoogle Scholar
  20. Chen CJ (1998) Morphological and molecular studies in the genus Tremella. Bibl Mycol 174:1–225Google Scholar
  21. Cho H, Yamagishi K, Abe S, Morioka S (1998) Method of producing erythritol. US patent 5,981,241Google Scholar
  22. Cocolin L, Heisey A, Mills DA (2001) Direct identification of the indigenous yeasts in commercial wine fermentations. Am J Enol Vitic 52:49–53Google Scholar
  23. Cuadros-Orellana S, Rabelo Leite L, Smith A, Dutra Medeiros J, Badotti F, Fonseca PLC, Vaz ABM, Oliveira G, Góes-Neto A (2013) Assessment of fungal diversity in the environment using metagenomics: a decade in review. Fungal Genom Biol 3:110Google Scholar
  24. Daniel HM, Lachance MA, Kurtzman CP (2014) On the reclassification of species assigned to Candida and other anamorphic ascomycetous yeast genera based on phylogenetic circumscription. Antonie van Leeuwenhoek 106:67–84Google Scholar
  25. de Barros Lopes M, Rainiere S, Henschje PA, Langridge P (1999) AFLP fingerprinting for analysis of yeast genetic variation. Int J Syst Bacteriol 49:915–924Google Scholar
  26. de Hoog GS, Smith MTh, Rosa CA (2011) Moniliella Stolk & Dakin (1966). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 1837–1846Google Scholar
  27. Diaz MR, Fell JW (2004) High-throughput detection of pathogenic yeasts of the genus Trichosporon. J Clin Microbiol 42:3696–3706CrossRefPubMedPubMedCentralGoogle Scholar
  28. Fell JW (1993) Rapid identification of yeast species using three primers in a polymerase chain reaction. Mol Mar Biol Biotechnol 2:174–180PubMedGoogle Scholar
  29. Fell JW, Boekhout T, Freshwater DW (1995) The role of nucleotide sequence analysis in the systematics of the yeast genera Cryptococcus and Rhodotorula. Stud Mycol 38:129–146Google Scholar
  30. Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371Google Scholar
  31. Firacative C, Trilles L, Meyer W (2012) MALDI-TOF MS enables the rapid identification of the major molecular types within the Cryptococcus neoformans/C. gattii species complex. PLoS One 7:e37566CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fitzpatrick DA, Logue ME, Stajich JE, Butler G (2006) A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol 6:99–113Google Scholar
  33. Fungsin B, Takashima M, Sugita T, Atjariyasripong S, Potacharoen W, Tanticharoen M, Nakase T (2006) Bullera koratensis sp. nov. and Bullera lagerstroemiae sp. nov., two new ballistoconidium-forming yeast species in the Trichosporonales-clade isolated from plant leaves in Thailand. J Gen Appl Microbiol 52:73–81Google Scholar
  34. Gadanho M, Almeida JM, Sampaio JP (2003) Assessment of yeast diversity in a marine environment in the south of Portugal by microsatellite-primed PCR. Antonie van Leeuwenhoek 84:217–227Google Scholar
  35. Gaitanis G, Magiatis P, Hantschke M, Bassukas ID, Velegraki A (2012) The Malassezia genus in skin and systemic diseases. Clin Microbiol Rev 25:106–141CrossRefPubMedPubMedCentralGoogle Scholar
  36. Golubev WI (1995) Perfect state of Rhodomyces dendrorhous (Phaffia rhodozyma). Yeast 11:101–110Google Scholar
  37. Groth C, Hansen J, Piskur J (1999) A natural chimeric yeast containing genetic material from three species. Int J Syst Bacteriol 49:1933–1938Google Scholar
  38. Guilliermond A (1912) Les levures. Encyclopédie Scientifique. O Doin et Fils, ParisGoogle Scholar
  39. Gupta AK, Batra R, Bluhm R, Boekhout T, Dawson TL (2004) Skin diseases associated with Malassezia species. J Am Acad Dermatol 51:785–798Google Scholar
  40. Hagen H, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, Falk R, Parnmen S, Lumbsch HT, Boekhout T (2015) Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol 78:16–48Google Scholar
  41. Hibbett DS (2006) A phylogenetic overview of the Agaricomycotina. Mycologia 98:917–925Google Scholar
  42. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Thorsten Lumbsch H, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüssler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547Google Scholar
  43. Hittinger CT, Rokas A, Bai FY, Boekhout T, Goncalves P, Jeffries TW, Kominek J, Lachance MA, Libkind D, Rosa CA, Sampaio JP, Kurtzman CP (2015) Genomics and the making of yeast biodiversity. Curr Opin Genet Dev 35:100–109Google Scholar
  44. Hulin M, Wheals A (2014) Rapid identification of Zygosaccharomyces with genus-specific primers. Int J Food Microbiol 73:9–13Google Scholar
  45. Illnait-Zaragozí MT, Martínez-Machín GF, Fernández-Andreu CM, Perurena-Lancha MR, Theelen B, Boekhout T, Meis JF, Klaassen CH (2012) Environmental isolation and characterisation of Cryptococcus species from living trees in Havana City, Cuba. Mycoses 55:e138–e144
  46. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüssler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822Google Scholar
  47. Johnson EA (2003) Phaffia rhodozyma: colorful odyssey. Int Microbiol 6:169–174Google Scholar
  48. Johnson EA, Echavarri-Erasun C (2011) Yeast biotechnology. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 21–44Google Scholar
  49. Khlif M, Mary C, Sellami H, Sellami A, Dumon H, Ayadi A, Ranque S (2009) Evaluation of nested and real-time PCR assays in the diagnosis of candidaemia. Clin Microbiol Infect 15:656–661Google Scholar
  50. Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Ainsworth & Bisby’s dictionary of the fungi, 9th edn. CAB, EghamGoogle Scholar
  51. Kirschner R, Sampaio JP, Gadanho M, Weiss M, Oberwinkler F (2001) Cuniculitrema polymorpha (Tremellales, gen. Nov. and sp. nov.), a heterobasidiomycete vectored by bark beetles, which is the teleomorph of Sterigmatosporidium polymorphum. Antonie van Leeuwenhoek 80:149–161Google Scholar
  52. Klingspor L, Jalal S (2006) Molecular detection and identification of Candida and Aspergillus spp. from clinical samples using real-time PCR. Clin Microbiol Infect 12:745–753Google Scholar
  53. Kluyver AJ, van Niel CB (1924) Über Spiegelbilder erzeugenden Hefenarten und die neue Hefengattung Sporobolomyces. Zentrlbl Bakteriol Parasitenk, Abt. II 63:1–20Google Scholar
  54. Kluyver AJ, van Niel CB (1927) Sporobolomyces: ein Basidiomyzet? Ann Mycol 25:389–394Google Scholar
  55. Kolecka A, Khayhan K, Groenewald M, Theelen B, Arabatzis M, Velegraki A, Kostrzewa M, Mares M, Taj-Aldeen SJ, Boekhout T (2013) Identification of medically relevant species of arthroconidial yeasts by use of matrix-assisted laser desorption ionization–time of flight mass spectrometry J Clin Microbiol 51:2491–2500Google Scholar
  56. Kolecka A, Khayhan K, Arabatzis M, Velegraki A, Kostrzewa M, Andersson A, Scheynius A, Cafarchia C, Iatta R, Montagna MT, Youngchim S, Cabañes FJ, Hoopman P, Kraak B, Groenewald M, Boekhout T (2014) Efficient identification of Malassezia yeasts by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). Br J Dermatol 170:332–341Google Scholar
  57. Kurtzman CP (1973) Formation of hyphae and chlamydospores by Cryptococcus laurentii. Mycologia 65:388–395Google Scholar
  58. Kurtzman CP (2009) Biotechnological strains of Komagataella (Pichia) pastoris are Komagataella phaffii as determined from multigene sequence analysis. J Ind Microbiol Biotechnol 36:1435–1438Google Scholar
  59. Kurtzman CP, Fell JW (1998) The yeasts, a taxonomic study, 4th edn. Elsevier, AmsterdamGoogle Scholar
  60. Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73:331–371CrossRefPubMedGoogle Scholar
  61. Kurtzman CP, Robnett CJ (2003) Phylogenetic relationships among yeasts of the “Saccharomyces complex” determined from multigene sequence analyses. FEMS Yeast Res 3:417–432Google Scholar
  62. Kurtzman CP, Robnett CJ (2013) Relationships among genera of the Saccharomycotina (Ascomycota) from multigene phylogenetic analysis of type species. FEMS Yeast Res 13:23–33Google Scholar
  63. Kurtzman CP, Albertyn J, Basehoar-Powers E (2007) Multigene phylogenetic analysis of the Lipomycetaceae and the proposed transfer of Zygozyma species to Lipomyces and Babjevia anomala to Dipodascopsis. FEMS Yeast Res 7:1027–1034Google Scholar
  64. Kurtzman CP, Fell JW, Boekhout T (2011a) The yeasts, a taxonomic study, 5th edn. Elsevier, AmsterdamGoogle Scholar
  65. Kurtzman CP, Fell JW, Boekhout T (2011b) Gene sequence analyses and other DNA-based methods for yeast species recognition. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 137–144Google Scholar
  66. Lachance MA, Daniel HM, Meyer W, Prasad GS, Gautam SP, Boundy-Mills K (2003) The D1/D2 domain of the large-subunit rDNA of the yeast species Clavispora lusitaniae is unusually polymorphic. FEMS Yeast Res 4:253–258Google Scholar
  67. Lachance MA, Boekhout T, Scorzetti G, Fell JW, Kurtzman CP (2011) Candida Berkhout. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 987–1278Google Scholar
  68. Libkind D, Sommaruga R, Zagarese H, van Broock M (2005) Mycosporines in carotenogenic yeasts. Syst Appl Microbiol 28:749–754Google Scholar
  69. Libkind D, Ruffini A, van Broock M, Alves L, Sampaio JP (2007) Biogeography, host specificity, and molecular phylogeny of the basidiomycetous yeast Phaffia rhodozyma and its sexual form, Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73:1120–1125Google Scholar
  70. Liu X-Z, Wang Q-M, Theelen B, Groenewald M, Bai, F-Y, Boekhout, T (2015a) Phylogeny of tremellomycetous yeasts and related dimorphic basidiomycetes reconstructed from multigene sequence analyses. Stud Mycol 81:1–16Google Scholar
  71. Liu X-Z, Wang Q-M, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, Millanes AM, Wedin M, Yurkov AM, Boekhout T, Bai F-Y (2015b) Towards an integrated phylogenetic classification of the Tremellomycets. Phylogeny of tremellomycetous yeasts and related dimorphic basidiomycetes reconstructed from multigene sequence analyses. Stud Mycol 81:85–147Google Scholar
  72. Loeffler J, Henke N, Hebart H, Schmidt D, Hagmeyer L, Schumacher U, Einsele H (2000) Quantification of fungal DNA by using fluorescence resonance energy transfer and the light cycler system. J Clin Microbiol 38:586–590Google Scholar
  73. Mannarelli BM, Kurtzman CP (1998) Rapid identification of Candida albicans and other human pathogenic yeasts by using short oligonucleotides in a PCR. J Clin Microbiol 36:1634–1641Google Scholar
  74. Marklein G, Josten M, Klanke U, Muller E, Horre R, Maier T, Wenzel T, Kostrzewa M, Bierbaum G, Hoerauf A, Sahl HG (2009) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates J Clin Microbiol 47:2912–2917Google Scholar
  75. Masoud W, Cesar LB, Jespersen L, Jakobsen M (2004) Yeast involved in fermentation of Coffea arabica in East Africa determined by genotyping and by direct denaturing gradient gel electrophoresis. Yeast 21:549–556Google Scholar
  76. Matheny PB, Curtis JM, V Hofstetter V, Aime MC, Moncalvo JM, Ge ZW, Slot JC, Ammirati JF, Baroni TJ, Bougher NL, Hughes KW, Lodge DJ, Kerrigan RW, Seidl MT, Aanen DK, DeNitis M, Daniele GM, Desjardin DE, Kropp BR, Norvell LL, Parker A, Vellinga EC, Vilgalys R, Hibbett DS (2006) Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia 98:982–985Google Scholar
  77. McNeill J, Barrie FR, Burdet HM, Demoulin V, Hawksworth DL, Marhold K, Nicolson DH, Prado J, Silva PC, Skog JE, Wiersema JH, Turland NJ (2006) International Code of Botanical Nomenclature (Vienna Code) Regnum Veg, 146. Gantner, Ruggell, LiechtensteinGoogle Scholar
  78. McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Marhold K, et al. (2012) International Code of Nomenclature for Algae, Fungi, and Plants (Melbourne Code). Regnum Veg, 154. Koelz Scientific Books, Koenigstein, GermanyGoogle Scholar
  79. McTaggart LR, Lei E, Richardson SE, Hoang L, Fothergill A, Zhang SX (2011) Rapid identification of Cryptococcus neoformans and Cryptococcus gattii by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49:3050–3053Google Scholar
  80. McTaggart AR, Shivas RG, Boekhout T, Oberwinkler F, Pennycook SR, Begerow D (2016) Mycosarcoma gen. Emend. accommodates the corn smut fungus, Ustilago maydis, as well as four new combinations of smut fungi in the Ustilaginaceae. IMA Fungus 7:309–315Google Scholar
  81. Meroth CB, Hammes WP, Hertel C (2003) Identification and population dynamics of yeasts in sourdough fermentation processes by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:7453–7461Google Scholar
  82. Middelhoven WJ, Fonseca A, Carreiro SC, Pagnocca FC, Bueno OC (2003) Cryptococcus haglerorum, sp. nov., an anamorphic basidiomycetous yeast isolated from nests of the leaf-cutting ant Atta sexdens. Antonie van Leeuwenhoek 83:167–174Google Scholar
  83. Mirarab S, Reaz R, Bayzid MS, Zimmermann T, Swenson MS, Warnow T (2014) ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics 30:i541–i548CrossRefPubMedPubMedCentralGoogle Scholar
  84. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73:127–141Google Scholar
  85. Nagy LG, Ohm RA, Kovács GM, Floudas D, Riley R, Gácser A, Sipiczki M, Davis JM, Doty SL, de Hoog GS, Lang BF, Spatafora JW, Martin FM, Grigoriev IV, Hibbett DS (2014) Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts. Nat Commun 5:4471. doi: 10.1038/ncomms5471
  86. Nakase T, Tsuzuki S, Takashima M (2002) Bullera taiwanensis sp. nov. and Bullera formosensis sp. nov, two new ballistoconidium-forming yeast species isolated from plant leaves in Taiwan. J Gen Appl Microbiol 48:345–355Google Scholar
  87. Nasr S, Soudi MR, Fazeli SAS, Nguyen HDT, Lutz M, Piątek M (2014) Expanding evolutionary diversity in the Ustilaginomycotina: Fereydouniaceae fam. Nov. and Fereydounia gen. Nov., the first urocystidalean yeast lineage. Mycol Progr 13:1217–1226Google Scholar
  88. Nguyen HD, Chabot D, Hirooka Y, Roberson RW, Seifert KA (2015) Basidioascus undulatus: genome, origins, and sexuality. IMA Fungus 6:215–231
  89. Nishida H, Katsuhiko A, Ando Y, Hirata A, Sugiyama J (1995) Mixia osmundae: transfer from the Ascomycota to the Basidiomycota based on evidence from molecules and morphology. Can J Bot (Suppl 1):S660–S666Google Scholar
  90. Nyland G (1949) Studies on some unusual Heterobasidiomycetes from Washington State. Mycologia 40:478–481Google Scholar
  91. Okoli I, Oyeka CA, Kwon-Chung KJ, Theelen B, Robert V, Groenewald JZ, McFadden DC, Casadevall A, Boekhout T (2007) Cryptotrichosporon anacardii gen. Nov., sp. nov., a new trichosporonoid capsulate basidiomycetous yeast from Nigeria that is able to form melanin on niger seed agar. FEMS Yeast Res 7:339–350Google Scholar
  92. Page BT, Kurtzman CP (2005) Rapid identification of Candida and other clinically important yeast species by flow cytometry. J Clin Microbiol 43:4507–4514Google Scholar
  93. Peterson SW, Kurtzman CP (1991) Ribosomal RNA sequence divergence among sibling species of yeasts. Syst Appl Microbiol 14:124–129Google Scholar
  94. Prakitchaiwattana CJ, Fleet GH, Heard GM (2004) Application and evaluation of denaturing gradient gel electrophoresis to analyse the yeast ecology of wine grapes. FEMS Yeast Res 4:865–877Google Scholar
  95. Prillinger H, Lopandic K, Sugita T, Wuczkowski M (2007) Asterotremella gen. Nov. albida, an anamorphic tremelloid yeast isolated from the agarics Asterophora lycoperdoides and Asterophora parasitica. J Gen Appl Microbiol 53:167–175Google Scholar
  96. Rigby S, Procop GW, Haase G, Wilson D, Hall G, Kurtzman C, Oliveira K, Von Oy S, Hyldig-Nielsen JJ, Coull J, Stender H (2002) Fluorescence in situ hybridization with peptide nucleic acid probes for rapid identification of Candida albicans directly from blood culture bottles. J Clin Microbiol 40:2182–2186Google Scholar
  97. Riley R, Haridas S, Wolfe KH, Lopes MR, Hittinger CT, Goker M, Salamov AA, Wisecaver JH, Long TM, Calvey CH, Aerts AL, Barry KW, Choi C, Clum A, Coughlan AY, Deshpande S, Douglass AP, Hanson SJ, Klenk HP, LaButti KM, Lapidus A, Lindquist EA, Lipzen AM, Meier-Kolthoff JP, Ohm RA, Otillar RP, Pangilinan JL, Peng Y, Rokas A, Rosa CA, Scheuner C, Sibirny AA, Slot JC, Stielow JB, Sun H, Kurtzman CP, Blackwell M, Grigoriev IV, Jeffries TW (2016) Comparative genomics of biotechnologically important yeasts. Proc Natl Acad Sci USA 113:9882–9887Google Scholar
  98. Rokas A (2016) Systematics in the age of genomics. In: Olson PD, Hughes J, Cotton JA (eds) Next generation systematics. Cambridge University Press, Cambridge, pp 219–228Google Scholar
  99. Rosling A, Cox F, Cruz-Martinez K, Ihrmark K, Grelet G-A, Lindahl BD, Menkis A, James TY (2011) Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi. Science 333:876–879Google Scholar
  100. Sampaio JP (2004) Diversity, phylogeny and classification of basidiomycetous yeasts. In: Agerer R, Piepenbring M, Blanz P (eds) Frontiers in basidiomycete mycology. IHW-Verlag, Eching, pp 49–80Google Scholar
  101. Sampaio JP, Weiss M, Gadanho M, Bauer R (2002) New taxa in the Tremellales: Bulleribasidium oberjochense gen. et sp. nov., Papiliotrema bandonii gen. et sp. nov. and Fibulobasidium murrhardtense sp. nov. Mycologia 94:873–887Google Scholar
  102. Sampaio JP, Inacio J, Fonseca A, Gadanho M, Spencer-Martins I, Scorzetti G, Fell JW (2004) Auriculibuller fuscus gen. nov., sp. nov. and Bullera japonica sp. nov., novel taxa in the Tremellales. Int J Syst Evol Microbiol 54:987–993CrossRefPubMedGoogle Scholar
  103. Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (2000) Introduction to food and airborne fungi. CBS, UtrechtGoogle Scholar
  104. Santos MA, Ueda T, Watanabe K, Tuite MF (1997) The non-standard genetic code of Candida spp.: an evolving genetic code or a novel mechanism for adaptation? Mol Microbiol 26:423–431Google Scholar
  105. Santos MA, Gomes AC, Santos MC, Carreto LC, Moura GR (2011) The genetic code of the fungal CTG clade. C R Biol 334:607–611CrossRefPubMedGoogle Scholar
  106. Scorzetti G, Fell JW, Fonseca A, Statzell-Tallman A (2002) Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res 2:495–517Google Scholar
  107. Shen XX, Zhou X, Kominek J, Kurtzman CP, Hittinger CT, Rokas A (2016) Reconstructing the backbone of the Saccharomycotina yeast phylogeny using genome-scale data. G3 (Bethesda). pii: g3.116.034744. doi: 10.1534/g3.116.034744
  108. Stender H, Kurtzman C, Hyldig-Nielsen JJ, Sørensen D, Broomer A, Oliveira K, Perry-O’Keefe H, Sage A, Young B, Coull J (2001) Identification of Dekkera bruxellensis (Brettanomyces) from wine by fluorescence in situ hybridization using peptide nucleic acid probes. Appl Environ Microbiol 67:938–941Google Scholar
  109. Sugita T, Nishikawa A, Ikeda R, Shinoda T (1999) Identification of medically relevant Trichosporon species based on sequences of internal transcribed spacer regions and construction of a database for Trichosporon identification. J Clin Microbiol 37:1985–1993Google Scholar
  110. Sugita T, Takashima M, Nakase T, Ichikawa T, Ikeda R, Shinoda T (2001) Two new yeasts, Trichosporon debeurmannianum spec. Nov. and Trichosporon dermatis sp. nov., transferred from the Cryptococcus humicola complex. Int J Syst Evol Microbiol 51:1221–1228Google Scholar
  111. Sugiyama J (1998) Relatedness, phylogeny, and evolution of the fungi. Mycoscience 39:487–511Google Scholar
  112. Swann EC, Taylor JW (1995) Phylogenetic perspectives on basidiomycete systematics: evidence from the 18S rRNA gene. Can J Bot 73(Suppl 1):S862–S868CrossRefGoogle Scholar
  113. Takashima M, Sugita T, Shinoda T, Nakase T (2001) Reclassification of the Cryptococcus humicola complex. Int J Syst Evol Microbiol 51:2199–2210Google Scholar
  114. Tan KE, Ellis BC, Lee R, Stamper PD, Zhang SX, Carroll KC (2012) Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J Clin Microbiol 50:3301–3308Google Scholar
  115. Tap RM, Ramli NY, Sabaratnam P, Hashim R, Bakri AR, Bee LB, Ginsapu SJ, Ahmad R, Razak MF, Ahmad N (2016) First Two cases of fungal infections associated with multi-drug resistant yeast, Fereydounia khargensis. Mycopathologia 181:531–537
  116. Templeton AR (1983) Systematics of basidiomycetes based on 5S rRNA sequences and other data. Nature 303:731CrossRefGoogle Scholar
  117. Tonge DP, Pashley CH, Gant TW (2014) Amplicon-based metagenomic analysis of mixed fungal samples using proton release amplicon sequencing. PLoS One 9:e93849CrossRefPubMedPubMedCentralGoogle Scholar
  118. Urquehart EJ, Menzies JG, Punja ZK (1994) Growth and biological control activity in Tilletiopsis species against powdery mildew (Sphaerotheca fuliginea) on greenhouse cucumber. Phytopathology 84:341–351Google Scholar
  119. von Arx JA, van der Walt JP (1987) Ophiostomatales and Endomycetales. Stud Mycol 30:167–176Google Scholar
  120. Walker WF (1985) 5S ribosomal RNA sequences from ascomycetes and evolutionary implications. Syst Appl Microbiol 6:48–53Google Scholar
  121. Walker WF, Doolittle WF (1982). Redividing the basidiomycetes on the basis of 5S rRNA nucleotide sequences. Nature 299:723–724Google Scholar
  122. Wang Q-M, Theelen B, Groenewald M, Bai F-Y, Boekhout T (2014) Moniliellomycetes and Malasseziomycetes, two new classes in Ustilaginomycotina. Persoonia 33:41–47Google Scholar
  123. Wang Q-M, Groenewald M, Takashima M, Theelen B, Han P-J, Liu X-Z, Boekhout T, Bai, F-Y (2015a) Phylogeny of yeasts and related filamentous fungi within Pucciniomycotina determined from multigene gene sequence analyses. Stud Mycol 81:27–53Google Scholar
  124. Wang Q-M, Yurkov AM, Göker M, Lumbsch HT, Leavitt SD, Groenewald M, Theelen B, Liu X-Z, Boekhout T, Bai F-Y (2015b) Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 81:27–53Google Scholar
  125. Wang Q-M, Begerow D, Groenewald M, Liu X-Z, Theelen B, Bai F-Y, Boekhout T (2015c) Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina. Stud Mycol 81:55–83Google Scholar
  126. Weiss M, Bauer R, Begerow D (2004) Spotlights on heterobasidiomycetes. In: Agerer R, Piepenbring M, Blanz P (eds) Frontiers in basidiomycete mycology. IHW-Verlag, Eching, pp 7–48Google Scholar
  127. Wellinghausen N, Siegel D, Winter J, Gebert S (2009) Rapid diagnosis of candidaemia by real-time PCR detection of Candida DNA in blood samples. J Med Microbiol 58:1106–1111Google Scholar
  128. Wu G, Zhao H, Li C, Rajapakse MP, Wong WC, Xu J, Saunders C, Reeder NL, Reilman RA, Scheynius A, Sun S, Billmyre BR, Li WJ, Averette A, Mieczkowski P, Heitman J, Theelen B, Schröder M, Florez De Sessions P, Butler G, Maurer-Stroh S, Boekhout T, Nagarajan N, Dawson TL (2015) Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology, and niche adaptation on human skin. PLoS Genet 11:e1005614CrossRefPubMedPubMedCentralGoogle Scholar
  129. Wuczkowski M, Passoth V, Turchetti B, Andersson AC, Olstorpe M, Laitila A, Theelen B, van Broock M, Buzzini P, Prillinger H, Sterflinger K, Schnürer J, Boekhout T, Libkind D (2011) Description of Holtermanniella gen. Nov., including Holtermanniella takashimae sp. nov. and four new combinations, and proposal of the order Holtermanniales to accommodate tremellomycetous yeasts of the Holtermannia clade. Int J Syst Evol Microbiol 61:680–689Google Scholar
  130. Zalar P, de Hoog GS, Schroers HJ, Frank JM, Gunde-Cimerman N (2005) Taxonomy and hylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie van Leeuwenhoek 87:311–328

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research ServiceU.S. Department of AgriculturePeoriaUSA
  2. 2.Westerdijk Fungal Biodiversity InstituteUtrechtThe Netherlands
  3. 3.Institute for Biodiversity and Ecosystem Dynamics (IBED)University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations