Skip to main content

How the Other Half Lives: CRISPR-Cas’s Influence on Bacteriophages

Abstract

CRISPR-Cas is a genetic adaptive immune system unique to prokaryotic cells used to combat phage and plasmid threats. The host cell adapts by incorporating DNA sequences from invading phages or plasmids into its CRISPR locus as spacers. These spacers are expressed as mobile surveillance RNAs that direct CRISPR-associated (Cas) proteins to protect against subsequent attack by the same phages or plasmids. The threat from mobile genetic elements inevitably shapes the CRISPR loci of archaea and bacteria, and simultaneously the CRISPR-Cas immune system drives evolution of these invaders. Here, we highlight our recent work, as well as that of others, that seeks to understand phage mechanisms of CRISPR-Cas evasion and conditions for population coexistence of phages with CRISPR-protected prokaryotes.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DBT, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K, Regev A, Lander ES, Koonin EV, Zhang F (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353(6299):aaf5573

    Google Scholar 

  • Al-Attar S, Westra ER, van der Oost J, Brouns SJ (2011) Clustered regularly interspaced short palindromic repeats (CRISPRs): The hallmark of an ingenious antiviral defense mechanism in prokaryotes. Biol Chem 392(4):277–289

    CrossRef  CAS  PubMed  Google Scholar 

  • Andersson AF, Banfield Jillian F (2008) Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320(5879):1047–1050

    CrossRef  CAS  PubMed  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712

    CrossRef  CAS  PubMed  Google Scholar 

  • Berezovskaya FS, Wolf YI, Koonin EV, Karev GP (2014) Pseudo-chaotic oscillations in CRISPR-virus coevolution predicted by bifurcation analysis. Biol Direct 9(1):1–17

    CrossRef  Google Scholar 

  • Berezovsky IN, Shakhnovich EI (2005) Physics and evolution of thermophilic adaptation. Proc Natl Acad Sci USA 102(36):12742–12747

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhaya D, Davison M, Barrangou Rodolphe (2011) CRISPR-Cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297

    CrossRef  CAS  PubMed  Google Scholar 

  • Bolotin A, Quinquis B, Sorokin A, Dusko Ehrlich S (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151(8):2551–2561

    Google Scholar 

  • Briner AE, Barrangou R (2016) Deciphering and shaping bacterial diversity through CRISPR. Curr Opin Microbiol 31:101–108

    CrossRef  CAS  PubMed  Google Scholar 

  • Childs LM, Held NL, Young MJ, Whitaker RJ, Weitz JS (2012) Multiscale model of CRISPR-induced coevolutionary dynamics: Diversification at the interface of Lamarck and Darwin. Evolution 66(7):2015–2029

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau Sylvain (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190(4):1390–1400

    CrossRef  CAS  PubMed  Google Scholar 

  • Deveau H, Garneau JE, Moineau S (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 64:475–493

    CrossRef  CAS  PubMed  Google Scholar 

  • Emerson JB, Andrade K, Thomas BC, Norman A, Allen EE, Heidelberg KB, Banfield JF (2013) Virus-host and CRISPR dynamics in archaea-dominated hypersaline Lake Tyrrell, Victoria, Australia. Archaea, 2013, p 370871

    Google Scholar 

  • Haerter JO, Trusina A, Sneppen K (2011) Targeted bacterial immunity buffers phage diversity. J Virol 85(20):10554–10560

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Han P, Deem MW (2017) Non-classical phase diagram for virus bacterial coevolution mediated by clustered regularly interspaced short palindromic repeats. J R Soc Interface 14(127):20160905

    CrossRef  PubMed  Google Scholar 

  • Han P, Niestemski LR, Barrick JE, Deem MW (2013) Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system. Phys Biol 10(2):025004

    Google Scholar 

  • He J, Deem MW (2010) Heterogeneous diversity of spacers within CRISPR (clustered regularly interspaced short palindromic repeats). Phys Rev Lett 105(12):128102

    CrossRef  PubMed  Google Scholar 

  • Heidelberg JF, Nelson WC, Schoenfeld T, Bhaya D (2009) Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes. PLoS ONE 4(1):e4169

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170

    CrossRef  CAS  PubMed  Google Scholar 

  • Horvath P, Coûté-Monvoisin A-C, Romero DA, Boyaval P, Fremaux C, Barrangou R (2009) Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int J Food Microbiol 131(1):62–70

    CrossRef  CAS  PubMed  Google Scholar 

  • Howe A, Ringus DL, Williams RJ, Choo Z-N, Greenwald SM, Owens SM, Coleman ML, Meyer F, Chang EB (2015) Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice. ISME J 10:1217–1227

    Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Iranzo J, Lobkovsky AE, Wolf YI, Koonin EV (2013) Evolutionary dynamics of the prokaryotic adaptive immunity system CRISPR-Cas in an explicit ecological context. J Bacteriol 195(17):3834–3844

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Maniv I, Arain F, Wang Y, Levin BR, Marraffini LA (2013) Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids. PLoS Genet 9(9):e1003844

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Koonin EV, Wolf YI (2015) Evolution of the CRISPR-Cas adaptive immunity systems in prokaryotes: Models and observations on virus-host coevolution. Mol BioSyst 11:20–27

    CrossRef  CAS  PubMed  Google Scholar 

  • Lander ES (2016) The heroes of CRISPR. Cell 164(1–2):18–28

    Google Scholar 

  • Levin BR, Moineau S, Bushman M, Barrangou R (2013) The population and evolutionary dynamics of phage and bacteria with CRISPR—mediated immunity. PLoS Genet 9(3):e1003312

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lillestøl R, Redder P, Garrett RA, Brügger KIM (2006) A putative viral defence mechanism in archaeal cells. Archaea 2(1):59–72

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Mahony J, van Sinderen D (2015) Novel strategies to prevent or exploit phages in fermentations, insights from phage–host interactions. Curr Opin Biotechnol 32:8–13

    CrossRef  CAS  PubMed  Google Scholar 

  • Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJM, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R, Koonin EV (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13(11):722–736

    Google Scholar 

  • Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11(3):181–190

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell KL (2016) Phages fight back: inactivation of the CRISPR-Cas bacterial immune system by anti-CRISPR proteins. PLoS Pathog 12(1):e1005282

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD, Lewis JD, Bushman FD (2011) The human gut virome: inter-individual variation and dynamic response to diet. Genome Res 21(10):1616–1625

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Mojica FJM, Garca-Martnez J, Soria E, Diez-Villasenor C (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60(2):174–182

    Google Scholar 

  • Paez-Espino D, Sharon I, Morovic W, Stahl B, Thomas BC, Barrangou R, Banfield JF (2015) CRISPR immunity drives rapid phage genome evolution in Streptococcus thermophilus. mBio 6(2):e00262-15

    Google Scholar 

  • Pennisi E (2013) The CRISPR craze. Science 341(6148):833–836

    CrossRef  CAS  PubMed  Google Scholar 

  • Peters JM, Silvis MR, Zhao D, Hawkins JS, Gross CA, Qi LS (2015) Bacterial CRISPR: accomplishments and prospects. Curr Opin Microbiol 27:121–126

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151(3):653–663

    CrossRef  CAS  PubMed  Google Scholar 

  • Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39(21):9275–9282

    Google Scholar 

  • Scarpellini E, Ianiro G, Attili F, Bassanelli C, De Santis A, Gasbarrini A (2015) The human gut microbiota and virome: potential therapeutic implications. Dig Liver Dis 47(12):1007–1012

    CrossRef  PubMed  Google Scholar 

  • Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, Stabler R, Thomson NR, Roberts AP, Cerdeño-Tárraga AM, Wang H et al (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38(7):779–786

    CrossRef  PubMed  Google Scholar 

  • Seed KD, Lazinski DW, Calderwood SB, Camilli A (2013) A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494(7438):489–491

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorek R, Kunin V, Hugenholtz P (2008) CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6(3):181–186

    CrossRef  CAS  PubMed  Google Scholar 

  • Sorek R, Lawrence CM, Wiedenheft B (2013) CRISPR-mediated adaptive immune systems in bacteria and archaea. Ann Rev Biochem 82:237–266

    Google Scholar 

  • Sun CL, Barrangou R, Thomas BC, Horvath P, Fremaux C, Banfield JF (2013) Phage mutations in response to CRISPR diversification in a bacterial population. Environ Microbiol 15(2):463–470

    CrossRef  CAS  PubMed  Google Scholar 

  • Tyson GW, Banfield JF (2008) Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ Microbiol 10(1):200–207

    CAS  PubMed  Google Scholar 

  • Weinberger AD, Wolf YI, Lobkovsky AE, Gilmore MS, Koonin EV (2012) Viral diversity threshold for adaptive immunity in prokaryotes. MBio 3(6):e00456–12

    Google Scholar 

  • Yosef I, Manor M, Kiro R, Qimron U (2015) Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci USA 112(23):7267–7272

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Center for Theoretical Biological Physics at Rice University, Houston, TX 77005, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Deem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bonomo, M.E., Deem, M.W. (2017). How the Other Half Lives: CRISPR-Cas’s Influence on Bacteriophages. In: Pontarotti, P. (eds) Evolutionary Biology: Self/Nonself Evolution, Species and Complex Traits Evolution, Methods and Concepts. Springer, Cham. https://doi.org/10.1007/978-3-319-61569-1_4

Download citation