Physiological Responses to Sedentary Behaviour

  • Paddy C. DempseyEmail author
  • John P. Thyfault
Part of the Springer Series on Epidemiology and Public Health book series (SSEH)


Sedentary behaviours—too much sitting as distinct from too little exercise—are emerging as a ubiquitous, modern-day health hazard. Epidemiological evidence is accumulating that indicates greater time spent in sedentary behaviour is associated with increased cardiometabolic risk, even when controlling for the influence of leisure time moderate-to-vigorous physical activity. Based on these observations and preliminary experimental work, it has been proposed that sedentary behaviour influences health risk in part through some distinct mechanisms that act independently of lack of physical activity. However, the observational evidence is well ahead of evidence on physiological responses and potential biological mechanisms that may underlie the observed associations. Here, we summarize and discuss experimental evidence to date on the physiological effects of sedentary behaviours (prolonged sitting), including potential countermeasures aiming to address too much sitting as a health risk. We also highlight future research that is needed to further ascertain the impact of sedentary behaviour on altering physiology.


  1. 1.
    Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59.CrossRefGoogle Scholar
  2. 2.
    Sedentary Behaviour Research Network. Standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab. 2012;37:540–2.CrossRefGoogle Scholar
  3. 3.
    Owen N, Healy GN, Matthews CE, Dunstan DW. Too much sitting: the population health science of sedentary behavior. Exerc Sport Sci Rev. 2010;38(3):105–13.CrossRefGoogle Scholar
  4. 4.
    Owen N, Leslie E, Salmon J, Fotheringham MJ. Environmental determinants of physical activity and sedentary behavior. Exerc Sport Sci Rev. 2000;28(4):153–8.Google Scholar
  5. 5.
    Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015;162(2):123–32.CrossRefGoogle Scholar
  6. 6.
    Wilmot EG, Edwardson CL, Achana FA, Davies MJ, Gorely T, Gray LJ, et al. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia. 2012;55(11):2895–905.CrossRefGoogle Scholar
  7. 7.
    Tremblay MS, Colley RC, Saunders TJ, Healy GN, Owen N. Physiological and health implications of a sedentary lifestyle. Appl Physiol Nutr Metab. 2010;35(6):725–40.CrossRefGoogle Scholar
  8. 8.
    Bergouignan A, Rudwill F, Simon C, Blanc S. Physical inactivity as the culprit of metabolic inflexibility: evidences from bed-rest studies. J Appl Physiol. 2011;111(4):1201–10.CrossRefGoogle Scholar
  9. 9.
    Thyfault JP, Krogh-Madsen R. Metabolic disruptions induced by reduced ambulatory activity in free-living humans. J Appl Physiol (1985). 2011;111(4):1218–24.CrossRefGoogle Scholar
  10. 10.
    Kump DS, Booth FW. Alterations in insulin receptor signalling in the rat epitrochlearis muscle upon cessation of voluntary exercise. J Physiol. 2005;562(Pt 3):829–38.CrossRefGoogle Scholar
  11. 11.
    Laye MJ, Thyfault JP, Stump CS, Booth FW. Inactivity induces increases in abdominal fat. J Appl Physiol (1985). 2007;102(4):1341–7.CrossRefGoogle Scholar
  12. 12.
    Kump DS, Booth FW. Sustained rise in triacylglycerol synthesis and increased epididymal fat mass when rats cease voluntary wheel running. J Physiol. 2005;565(Pt 3):911–25.CrossRefGoogle Scholar
  13. 13.
    O'Keefe MP, Perez FR, Kinnick TR, Tischler ME, Henriksen EJ. Development of whole-body and skeletal muscle insulin resistance after one day of hindlimb suspension. Metabolism. 2004;53(9):1215–22.CrossRefGoogle Scholar
  14. 14.
    Bey L, Hamilton MT. Suppression of skeletal muscle lipoprotein lipase activity during physical activity: a molecular reason to maintain daily low-intensity activity. J Physiol. 2003;551(2):673–82.CrossRefGoogle Scholar
  15. 15.
    Hamilton MT, Hamilton DG, Zderic TW. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes. 2007;56(11):2655–67.CrossRefGoogle Scholar
  16. 16.
    Bey L, Akunuri N, Zhao P, Hoffman EP, Hamilton DG, Hamilton MT. Patterns of global gene expression in rat skeletal muscle during unloading and low-intensity ambulatory activity. Physiol Genomics. 2003;13(2):157–67.CrossRefGoogle Scholar
  17. 17.
    Mujika I, Padilla S. Muscular characteristics of detraining in humans. Med Sci Sports Exerc. 2001;33(8):1297–303.CrossRefGoogle Scholar
  18. 18.
    Mujika I, Padilla S. Cardiorespiratory and metabolic characteristics of detraining in humans. Med Sci Sports Exerc. 2001;33(3):413–21.CrossRefGoogle Scholar
  19. 19.
    Oshida Y, Yamanouchi K, Hayamizu S, Nagasawa J, Ohsawa I, Sato Y. Effects of training and training cessation on insulin action. Int J Sports Med. 1991;12(5):484–6.CrossRefGoogle Scholar
  20. 20.
    Burstein R, Polychronakos C, Toews CJ, MacDougall JD, Guyda HJ, Posner BI. Acute reversal of the enhanced insulin action in trained athletes. Association with insulin receptor changes. Diabetes. 1985;34(8):756–60.CrossRefGoogle Scholar
  21. 21.
    Hamburg NM, McMackin CJ, Huang AL, Shenouda SM, Widlansky ME, Schulz E, et al. Physical inactivity rapidly induces insulin resistance and microvascular dysfunction in healthy volunteers. Arterioscler Thromb Vasc Biol. 2007;27(12):2650–6.CrossRefGoogle Scholar
  22. 22.
    Alibegovic AC, Hojbjerre L, Sonne MP, van Hall G, Stallknecht B, Dela F, et al. Impact of 9 days of bed rest on hepatic and peripheral insulin action, insulin secretion, and whole-body lipolysis in healthy young male offspring of patients with type 2 diabetes. Diabetes. 2009;58(12):2749–56.CrossRefGoogle Scholar
  23. 23.
    Sonne MP, Alibegovic AC, Hojbjerre L, Vaag A, Stallknecht B, Dela F. Effect of 10 days of bedrest on metabolic and vascular insulin action: a study in individuals at risk for type 2 diabetes. J Appl Physiol (1985). 2010;108(4):830–7.CrossRefGoogle Scholar
  24. 24.
    Mikus CR, Oberlin DJ, Libla JL, Taylor AM, Booth FW, Thyfault JP. Lowering physical activity impairs glycemic control in healthy volunteers. Med Sci Sports Exerc. 2012;44(2):225–31.CrossRefGoogle Scholar
  25. 25.
    Reynolds LJ, Credeur DP, Holwerda SW, Leidy HJ, Fadel PJ, Thyfault JP. Acute inactivity impairs glycemic control but not blood flow to glucose ingestion. Med Sci Sports Exerc. 2015;47(5):1087–94.CrossRefGoogle Scholar
  26. 26.
    Boyle LJ, Credeur DP, Jenkins NT, Padilla J, Leidy HJ, Thyfault JP, et al. Impact of reduced daily physical activity on conduit artery flow-mediated dilation and circulating endothelial microparticles. J Appl Physiol (1985). 2013;115(10):1519–25.CrossRefGoogle Scholar
  27. 27.
    Krogh-Madsen R, Thyfault JP, Broholm C, Mortensen OH, Olsen RH, Mounier R, et al. A 2-wk reduction of ambulatory activity attenuates peripheral insulin sensitivity. J Appl Physiol. 2010;108(5):1034–40.CrossRefGoogle Scholar
  28. 28.
    Judice PB, Hamilton MT, Sardinha LB, Zderic TW, Silva AM. What is the metabolic and energy cost of sitting, standing and sit/stand transitions? Eur J Appl Physiol. 2016;116(2):263–73.CrossRefGoogle Scholar
  29. 29.
    Mansoubi M, Pearson N, Clemes SA, Biddle SJ, Bodicoat DH, Tolfrey K, et al. Energy expenditure during common sitting and standing tasks: examining the 1.5 MET definition of sedentary behaviour. BMC Public Health. 2015;15:516.CrossRefGoogle Scholar
  30. 30.
    Newton RL Jr, Han H, Zderic T, Hamilton MT. The energy expenditure of sedentary behavior: a whole room calorimeter study. PLoS One. 2013;8(5):e63171.CrossRefGoogle Scholar
  31. 31.
    Tikkanen O, Haakana P, Pesola AJ, Hakkinen K, Rantalainen T, Havu M, et al. Muscle activity and inactivity periods during normal daily life. PLoS One. 2013;8(1):e52228.CrossRefGoogle Scholar
  32. 32.
    Dunstan DW, Howard B, Bergouignan A, Kingwell BA, Owen N. Chapter 3: Physiological effects of reducing and breaking up sitting time. In: Zhu W, Owen N, editors. Urbana-Champaign, IL: Human Kinetics; 2017 (ISBN-13: 9781450471282).Google Scholar
  33. 33.
    Dempsey PC, Owen N, Biddle SJ, Dunstan DW. Managing sedentary behavior to reduce the risk of diabetes and cardiovascular disease. Curr Diab Rep. 2014;14(9):522.CrossRefGoogle Scholar
  34. 34.
    Duvivier BM, Schaper NC, Bremers MA, van Crombrugge G, Menheere PP, Kars M, et al. Minimal intensity physical activity (standing and walking) of longer duration improves insulin action and plasma lipids more than shorter periods of moderate to vigorous exercise (cycling) in sedentary subjects when energy expenditure is comparable. PLoS One. 2013;8(2):e55542.CrossRefGoogle Scholar
  35. 35.
    Lyden K, Keadle SK, Staudenmayer J, Braun B, Freedson PS. Discrete features of sedentary behavior impact cardiometabolic risk factors. Med Sci Sports Exerc. 2015;47(5):1079–86.CrossRefGoogle Scholar
  36. 36.
    Altenburg TM, Rotteveel J, Dunstan DW, Salmon J, Chinapaw MJ. The effect of interrupting prolonged sitting time with short, hourly, moderate-intensity cycling bouts on cardiometabolic risk factors in healthy, young adults. J Appl Physiol (1985). 2013;115(12):1751–6.CrossRefGoogle Scholar
  37. 37.
    Bailey DP, Locke CD. Breaking up prolonged sitting with light-intensity walking improves postprandial glycemia, but breaking up sitting with standing does not. J Sci Med Sport. 2015;18(3):294–8.CrossRefGoogle Scholar
  38. 38.
    Buckley JP, Mellor DD, Morris M, Joseph F. Standing-based office work shows encouraging signs of attenuating post-prandial glycaemic excursion. Occup Environ Med. 2014;71(2):109–11.CrossRefGoogle Scholar
  39. 39.
    Dempsey PC, Larsen RN, Sethi P, Sacre JW, Straznicky NE, Cohen ND, et al. Benefits for type 2 diabetes of interrupting prolonged sitting with brief bouts of light walking or simple resistance activities. Diabetes Care. 2016;39(6):964–72.CrossRefGoogle Scholar
  40. 40.
    Dunstan DW, Kingwell BA, Larsen R, Healy GN, Cerin E, Hamilton MT, et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care. 2012;35(5):976–83.CrossRefGoogle Scholar
  41. 41.
    Howard BJ, Fraser SF, Sethi P, Cerin E, Hamilton MT, Owen N, et al. Impact on hemostatic parameters of interrupting sitting with intermittent activity. Med Sci Sports Exerc. 2013;45(7):1285–91.CrossRefGoogle Scholar
  42. 42.
    Larsen RN, Kingwell BA, Sethi P, Cerin E, Owen N, Dunstan DW. Breaking up prolonged sitting reduces resting blood pressure in overweight/obese adults. Nutr Metab Cardiovasc Dis. 2014;24(9):976–82.CrossRefGoogle Scholar
  43. 43.
    Younger AM, Pettitt RW, Sexton PJ, Maass WJ, Pettitt CD. Acute moderate exercise does not attenuate cardiometabolic function associated with a bout of prolonged sitting. J Sports Sci. 2016;34(7):658–63.CrossRefGoogle Scholar
  44. 44.
    Henson J, Davies MJ, Bodicoat DH, Edwardson CL, Gill JM, Stensel DJ, et al. Breaking up prolonged sitting with standing or walking attenuates the postprandial metabolic response in postmenopausal women: a randomized acute study. Diabetes Care. 2016;39(1):130–8.CrossRefGoogle Scholar
  45. 45.
    Holmstrup ME, Fairchild TJ, Keslacy S, Weinstock RS, Kanaley JA. Satiety, but not total PYY, Is increased with continuous and intermittent exercise. Obesity (Silver Spring). 2013;21(10):2014–20.CrossRefGoogle Scholar
  46. 46.
    Kim IY, Park S, Trombold JR, Coyle EF. Effects of moderate- and intermittent low-intensity exercise on postprandial lipemia. Med Sci Sports Exerc. 2014;46(10):1882–90.CrossRefGoogle Scholar
  47. 47.
    Larsen RN, Kingwell BA, Robinson C, Hammond L, Cerin E, Shaw JE, et al. Breaking up of prolonged sitting over three days sustains, but does not enhance, lowering of postprandial plasma glucose and insulin in overweight and obese adults. Clin Sci (Lond). 2015;129(2):117–27.CrossRefGoogle Scholar
  48. 48.
    Lunde MS, Hjellset VT, Hostmark AT. Slow post meal walking reduces the blood glucose response: an exploratory study in female Pakistani immigrants. J Immigr Minor Health. 2012;14(5):816–22.CrossRefGoogle Scholar
  49. 49.
    Miyashita M, Park JH, Takahashi M, Suzuki K, Stensel D, Nakamura Y. Postprandial lipaemia: effects of sitting, standing and walking in healthy normolipidaemic humans. Int J Sports Med. 2013;34(1):21–7.Google Scholar
  50. 50.
    Takahashi M, Miyashita M, Park JH, Sakamoto S, Suzuki K. Effects of breaking sitting by standing and acute exercise on postprandial oxidative stress. Asian J Sports Med. 2015;6(3):e24902.CrossRefGoogle Scholar
  51. 51.
    Miyashita M, Edamoto K, Kidokoro T, Yanaoka T, Kashiwabara K, Takahashi M, et al. Interrupting sitting time with regular walks attenuates postprandial triglycerides. Int J Sports Med. 2016;37(2):97–103.Google Scholar
  52. 52.
    Newsom SA, Everett AC, Hinko A, Horowitz JF. A single session of low-intensity exercise is sufficient to enhance insulin sensitivity into the next day in obese adults. Diabetes Care. 2013;36(9):2516–22.CrossRefGoogle Scholar
  53. 53.
    Nygaard H, Tomten SE, Hostmark AT. Slow postmeal walking reduces postprandial glycemia in middle-aged women. Appl Physiol Nutr Metab. 2009;34(6):1087–92.CrossRefGoogle Scholar
  54. 54.
    Peddie MC, Bone JL, Rehrer NJ, Skeaff CM, Gray AR, Perry TL. Breaking prolonged sitting reduces postprandial glycemia in healthy, normal-weight adults: a randomized crossover trial. Am J Clin Nutr. 2013;98(2):358–66.CrossRefGoogle Scholar
  55. 55.
    Stephens BR, Granados K, Zderic TW, Hamilton MT, Braun B. Effects of 1 day of inactivity on insulin action in healthy men and women: interaction with energy intake. Metabolism. 2011;60(7):941–9.CrossRefGoogle Scholar
  56. 56.
    Thorp AA, Kingwell BA, Sethi P, Hammond L, Owen N, Dunstan DW. Alternating bouts of sitting and standing attenuate postprandial glucose responses. Med Sci Sports Exerc. 2014;46(11):2053–61.CrossRefGoogle Scholar
  57. 57.
    Van Dijk JW, Venema M, van Mechelen W, Stehouwer CD, Hartgens F, Van Loon LJ. Effect of moderate-intensity exercise versus activities of daily living on 24-hour blood glucose homeostasis in male patients with type 2 diabetes. Diabetes Care. 2013;36(11):3448–53.CrossRefGoogle Scholar
  58. 58.
    Dempsey PC, Owen N, Yates TE, Kingwell BA, Dunstan DW. Sitting less and moving more: improved glycemic control for type 2 diabetes prevention and management. Curr Diab Rep. 2016;16(11):114.CrossRefGoogle Scholar
  59. 59.
    Bergouignan A, Latouche C, Heywood S, Grace MS, Reddy-Luthmoodoo M, Natoli AK, et al. Frequent interruptions of sedentary time modulates contraction- and insulin-stimulated glucose uptake pathways in muscle: ancillary analysis from randomized clinical trials. Sci Rep. 2016;6:32044.CrossRefGoogle Scholar
  60. 60.
    Smorawinski J, Kaciuba-Uscilko H, Nazar K, Kubala P, Kaminska E, Ziemba AW, et al. Effects of three-day bed rest on metabolic, hormonal and circulatory responses to an oral glucose load in endurance or strength trained athletes and untrained subjects. J Physiol Pharmacol. 2000;51(2):279–89.Google Scholar
  61. 61.
    Mikines KJ, Dela F, Tronier B, Galbo H. Effect of 7 days of bed rest on dose-response relation between plasma glucose and insulin secretion. Am J Phys. 1989;257(1 Pt 1):E43–8.Google Scholar
  62. 62.
    Yanagibori R, Kondo K, Suzuki Y, Kawakubo K, Iwamoto T, Itakura H, et al. Effect of 20 days’ bed rest on the reverse cholesterol transport system in healthy young subjects. J Intern Med. 1998;243(4):307–12.CrossRefGoogle Scholar
  63. 63.
    Cohen JC, Berger GM. Effects of glucose ingestion on postprandial lipemia and triglyceride clearance in humans. J Lipid Res. 1990;31(4):597–602.Google Scholar
  64. 64.
    Albrink MJ, Fitzgerald JR, Man EB. Reduction of alimentary lipemia by glucose. Metabolism. 1958;7(2):162–71.Google Scholar
  65. 65.
    Bergouignan A, Gozansky WS, Barry DW, Leitner W, MacLean PS, Hill JO, et al. Increasing dietary fat elicits similar changes in fat oxidation and markers of muscle oxidative capacity in lean and obese humans. PLoS One. 2012;7(1):e30164.CrossRefGoogle Scholar
  66. 66.
    Hitosugi M, Niwa M, Takatsu A. Rheologic changes in venous blood during prolonged sitting. Thromb Res. 2000;100(5):409–12.CrossRefGoogle Scholar
  67. 67.
    Padilla J, Sheldon RD, Sitar DM, Newcomer SC. Impact of acute exposure to increased hydrostatic pressure and reduced shear rate on conduit artery endothelial function: a limb-specific response. Am J Physiol Heart Circ Physiol. 2009;297(3):H1103–8.CrossRefGoogle Scholar
  68. 68.
    Restaino RM, Holwerda SW, Credeur DP, Fadel PJ, Padilla J. Impact of prolonged sitting on lower and upper limb micro- and macrovascular dilator function. Exp Physiol. 2015;100(7):829–38.CrossRefGoogle Scholar
  69. 69.
    Shvartz E, Gaume JG, White RT, Reibold RC. Hemodynamic responses during prolonged sitting. J Appl Physiol. 1983;54(6):1673–80.Google Scholar
  70. 70.
    Thosar SS, Bielko SL, Mather KJ, Johnston JD, Wallace JP. Effect of prolonged sitting and breaks in sitting time on endothelial function. Med Sci Sports Exerc. 2015;47(4):843–9.CrossRefGoogle Scholar
  71. 71.
    Zeigler ZS, Mullane SL, Crespo NC, Buman MP, Gaesser GA. Effects of standing and light-intensity activity on ambulatory blood pressure. Med Sci Sports Exerc. 2016;48(2):175–81.CrossRefGoogle Scholar
  72. 72.
    Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 1985;5(3):293–302.CrossRefGoogle Scholar
  73. 73.
    Liepsch D. An introduction to biofluid mechanics – basic models and applications. J Biomech. 2002;35(4):415–35.CrossRefGoogle Scholar
  74. 74.
    Dempsey PC, Sacre JW, Larsen RN, Straznicky NE, Sethi P, Cohen ND, et al. Interrupting prolonged sitting with brief bouts of light walking or simple resistance activities reduces resting blood pressure and plasma noradrenaline in type 2 diabetes. J Hypertens. 2016;34(12):2376–82.CrossRefGoogle Scholar
  75. 75.
    Noddeland H, Ingemansen R, Reed RK, Aukland K. A telemetric technique for studies of venous pressure in the human leg during different positions and activities. Clin Physiol. 1983;3(6):573–6.CrossRefGoogle Scholar
  76. 76.
    Noddeland H, Winkel J. Effects of leg activity and ambient barometric pressure on foot swelling and lower-limb skin temperature during 8 h of sitting. Eur J Appl Physiol Occup Physiol. 1988;57(4):409–14.CrossRefGoogle Scholar
  77. 77.
    Scurr JH, Machin SJ, Bailey-King S, Mackie IJ, McDonald S, Smith PD. Frequency and prevention of symptomless deep-vein thrombosis in long-haul flights: a randomised trial. Lancet. 2001;357(9267):1485–9.CrossRefGoogle Scholar
  78. 78.
    Kesteven P, Robinson B. Incidence of symptomatic thrombosis in a stable population of 650,000: travel and other risk factors. Aviat Space Environ Med. 2002;73(6):593–6.Google Scholar
  79. 79.
    Gallus AS. Travel, venous thromboembolism, and thrombophilia. Semin Thromb Hemost. 2005;31(1):90–6.CrossRefGoogle Scholar
  80. 80.
    Ferrari E, Chevallier T, Chapelier A, Baudouy M. Travel as a risk factor for venous thromboembolic disease: a case-control study. Chest. 1999;115(2):440–4.CrossRefGoogle Scholar
  81. 81.
    West J, Perrin K, Aldington S, Weatherall M, Beasley R. A case-control study of seated immobility at work as a risk factor for venous thromboembolism. J R Soc Med. 2008;101(5):237–43.CrossRefGoogle Scholar
  82. 82.
    Healy B, Levin E, Perrin K, Weatherall M, Beasley R. Prolonged work- and computer-related seated immobility and risk of venous thromboembolism. J R Soc Med. 2010;103(11):447–54.CrossRefGoogle Scholar
  83. 83.
    Aldington S, Pritchard A, Perrin K, James K, Wijesinghe M, Beasley R. Prolonged seated immobility at work is a common risk factor for venous thromboembolism leading to hospital admission. Intern Med J. 2008;38(2):133–5.CrossRefGoogle Scholar
  84. 84.
    Delis KT, Knaggs AL, Sonecha TN, Zervas V, Jenkins MP, Wolfe JH. Lower limb venous haemodynamic impairment on dependency: quantification and implications for the “economy class” position. Thromb Haemost. 2004;91(5):941–50.Google Scholar
  85. 85.
    Malone PC. Air travel and risk of venous thromboembolism. Passengers should reduce consumption of alcohol on flights. BMJ. 2001;322(7295):1183–4.CrossRefGoogle Scholar
  86. 86.
    Hamer JD, Malone PC. Experimental deep venous thrombogenesis by a non-invasive method. Ann R Coll Surg Engl. 1984;66(6):416–9.Google Scholar
  87. 87.
    Moyses C, Cederholm-Williams SA, Michel CC. Haemoconcentration and accumulation of white cells in the feet during venous stasis. Int J Microcirc Clin Exp. 1987;5(4):311–20.Google Scholar
  88. 88.
    El-Sayed MS, Ali N, El-Sayed AZ. Haemorheology in exercise and training. Sports Med. 2005;35(8):649–70.CrossRefGoogle Scholar
  89. 89.
    Zderic TW, Hamilton MT. Identification of hemostatic genes expressed in human and rat leg muscles and a novel gene (LPP1/PAP2A) suppressed during prolonged physical inactivity (sitting). Lipids Health Dis. 2012;11:137.CrossRefGoogle Scholar
  90. 90.
    Collins C, Fitzgerald P, Kennedy DM, Corrigan T, Jerrams S, Bouchier-Hayes DJ. The Tromped: a solution for flight-related deep vein thrombosis? Angiology. 2008;59(1):72–6.CrossRefGoogle Scholar
  91. 91.
    Lurie F, Kistner RL, Eklof B, Tsukamoto JK. Prevention of air travel-related deep venous thrombosis with mechanical devices: active foot movements produce similar hemodynamic effects. J Vasc Surg. 2006;44(4):889–91.CrossRefGoogle Scholar
  92. 92.
    Hitos K, Cannon M, Cannon S, Garth S, Fletcher JP. Effect of leg exercises on popliteal venous blood flow during prolonged immobility of seated subjects: implications for prevention of travel-related deep vein thrombosis. J Thromb Haemost. 2007;5(9):1890–5.CrossRefGoogle Scholar
  93. 93.
    Morishima T, Restaino RM, Walsh LK, Kanaley JA, Fadel PJ, Padilla J. Prolonged sitting-induced leg endothelial dysfunction is prevented by fidgeting. Am J Physiol Heart Circ Physiol. 2016;311(1):H177–82.CrossRefGoogle Scholar
  94. 94.
    Meigs JB, Hu FB, Rifai N, Manson JE. Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA. 2004;291(16):1978–86.CrossRefGoogle Scholar
  95. 95.
    Meigs JB, O'Donnell CJ, Tofler GH, Benjamin EJ, Fox CS, Lipinska I, et al. Hemostatic markers of endothelial dysfunction and risk of incident type 2 diabetes: the Framingham Offspring Study. Diabetes. 2006;55(2):530–7.CrossRefGoogle Scholar
  96. 96.
    Thosar SS, Johnson BD, Johnston JD, Wallace JP. Sitting and endothelial dysfunction: the role of shear stress. Med Sci Monit. 2012;18(12):RA173–80.CrossRefGoogle Scholar
  97. 97.
    Heitzer T, Schlinzig T, Krohn K, Meinertz T, Munzel T. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation. 2001;104(22):2673–8.CrossRefGoogle Scholar
  98. 98.
    Anderson TJ, Charbonneau F, Title LM, Buithieu J, Rose MS, Conradson H, et al. Microvascular function predicts cardiovascular events in primary prevention: long-term results from the Firefighters and Their Endothelium (FATE) study. Circulation. 2011;123(2):163–9.CrossRefGoogle Scholar
  99. 99.
    Santos R, Mota J, Okely AD, Pratt M, Moreira C, Coelho-e-Silva MJ, et al. The independent associations of sedentary behaviour and physical activity on cardiorespiratory fitness. Br J Sports Med. 2014;48(20):1508–12.CrossRefGoogle Scholar
  100. 100.
    Prince SA, Blanchard CM, Grace SL, Reid RD. Objectively-measured sedentary time and its association with markers of cardiometabolic health and fitness among cardiac rehabilitation graduates. Eur J Prev Cardiol. 2016;23(8):818–25.CrossRefGoogle Scholar
  101. 101.
    Kozey Keadle S, Lyden K, Staudenmayer J, Hickey A, Viskochil R, Braun B, et al. The independent and combined effects of exercise training and reducing sedentary behavior on cardiometabolic risk factors. Appl Physiol Nutr Metab. 2014;39(7):770–80.CrossRefGoogle Scholar
  102. 102.
    Olsen RH, Krogh-Madsen R, Thomsen C, Booth FW, Pedersen BK. Metabolic responses to reduced daily steps in healthy nonexercising men. JAMA. 2008;299(11):1261–3.CrossRefGoogle Scholar
  103. 103.
    Kokkinos P, Myers J, Kokkinos JP, Pittaras A, Narayan P, Manolis A, et al. Exercise capacity and mortality in black and white men. Circulation. 2008;117(5):614–22.CrossRefGoogle Scholar
  104. 104.
    Blair SN, Kohl HW 3rd, Paffenbarger RS Jr, Clark DG, Cooper KH, Gibbons LW. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA. 1989;262(17):2395–401.CrossRefGoogle Scholar
  105. 105.
    Williams MD, Nadler JL. Inflammatory mechanisms of diabetic complications. Curr Diab Rep. 2007;7(3):242–8.CrossRefGoogle Scholar
  106. 106.
    Tataranni PA, Ortega E. A burning question: does an adipokine-induced activation of the immune system mediate the effect of overnutrition on type 2 diabetes? Diabetes. 2005;54(4):917–27.CrossRefGoogle Scholar
  107. 107.
    Pickup JC, Crook MA. Is type II diabetes mellitus a disease of the innate immune system? Diabetologia. 1998;41(10):1241–8.CrossRefGoogle Scholar
  108. 108.
    Allison MA, Jensky NE, Marshall SJ, Bertoni AG, Cushman M. Sedentary behavior and adiposity-associated inflammation: the Multi-Ethnic Study of Atherosclerosis. Am J Prev Med. 2012;42(1):8–13.CrossRefGoogle Scholar
  109. 109.
    Falconer CL, Cooper AR, Walhin JP, Thompson D, Page AS, Peters TJ, et al. Sedentary time and markers of inflammation in people with newly diagnosed type 2 diabetes. Nutr Metab Cardiovasc Dis. 2014;24(9):956–62.CrossRefGoogle Scholar
  110. 110.
    Henson J, Yates T, Edwardson CL, Khunti K, Talbot D, Gray LJ, et al. Sedentary time and markers of chronic low-grade inflammation in a high risk population. PLoS One. 2013;8(10):e78350.CrossRefGoogle Scholar
  111. 111.
    Yates T, Khunti K, Wilmot EG, Brady E, Webb D, Srinivasan B, et al. Self-reported sitting time and markers of inflammation, insulin resistance, and adiposity. Am J Prev Med. 2012;42(1):1–7.CrossRefGoogle Scholar
  112. 112.
    Healy GN, Matthews CE, Dunstan DW, Winkler EA, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06. Eur Heart J. 2011;32(5):590–7.CrossRefGoogle Scholar
  113. 113.
    Stamatakis E, Hamer M, Dunstan DW. Screen-based entertainment time, all-cause mortality, and cardiovascular events: population-based study with ongoing mortality and hospital events follow-up. J Am Coll Cardiol. 2011;57(3):292–9.CrossRefGoogle Scholar
  114. 114.
    Loprinzi PD. Leisure-time screen-based sedentary behavior and leukocyte telomere length: implications for a new leisure-time screen-based sedentary behavior mechanism. Mayo Clin Proc. 2015;90(6):786–90.CrossRefGoogle Scholar
  115. 115.
    Sjogren P, Fisher R, Kallings L, Svenson U, Roos G, Hellenius ML. Stand up for health – avoiding sedentary behaviour might lengthen your telomeres: secondary outcomes from a physical activity RCT in older people. Br J Sports Med. 2014;48(19):1407–9.CrossRefGoogle Scholar
  116. 116.
    Hamer M, Stamatakis E. The accumulative effects of modifiable risk factors on inflammation and haemostasis. Brain Behav Immun. 2008;22(7):1041–3.CrossRefGoogle Scholar
  117. 117.
    Wijndaele K, Healy GN, Dunstan DW, Barnett AG, Salmon J, Shaw JE, et al. Increased cardiometabolic risk is associated with increased TV viewing time. Med Sci Sports Exerc. 2010;42(8):1511–8.CrossRefGoogle Scholar
  118. 118.
    Hu FB, Li TY, Colditz GA, Willett WC, Manson JE. Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA. 2003;289(14):1785–91.CrossRefGoogle Scholar
  119. 119.
    Ford ES, Kohl HW 3rd, Mokdad AH, Ajani UA. Sedentary behavior, physical activity, and the metabolic syndrome among U.S. adults. Obes Res. 2005;13(3):608–14.CrossRefGoogle Scholar
  120. 120.
    Must A, Tybor DJ. Physical activity and sedentary behavior: a review of longitudinal studies of weight and adiposity in youth. Int J Obes. 2005;29(Suppl 2):S84–96.CrossRefGoogle Scholar
  121. 121.
    Bosutti A, Malaponte G, Zanetti M, Castellino P, Heer M, Guarnieri G, et al. Calorie restriction modulates inactivity-induced changes in the inflammatory markers C-reactive protein and pentraxin-3. J Clin Endocrinol Metab. 2008;93(8):3226–9.CrossRefGoogle Scholar
  122. 122.
    Drummond MJ, Timmerman KL, Markofski MM, Walker DK, Dickinson JM, Jamaluddin M, et al. Short-term bed rest increases TLR4 and IL-6 expression in skeletal muscle of older adults. Am J Physiol Regul Integr Comp Physiol. 2013;305(3):R216–23.CrossRefGoogle Scholar
  123. 123.
    Karra E, Batterham RL. The role of gut hormones in the regulation of body weight and energy homeostasis. Mol Cell Endocrinol. 2010;316(2):120–8.CrossRefGoogle Scholar
  124. 124.
    Hussain SS, Bloom SR. The regulation of food intake by the gut-brain axis: implications for obesity. Int J Obes. 2013;37(5):625–33.CrossRefGoogle Scholar
  125. 125.
    Hazell TJ, Islam H, Townsend LK, Schmale MS, Copeland JL. Effects of exercise intensity on plasma concentrations of appetite-regulating hormones: potential mechanisms. Appetite. 2016;98:80–8.CrossRefGoogle Scholar
  126. 126.
    Schubert MM, Desbrow B, Sabapathy S, Leveritt M. Acute exercise and subsequent energy intake. A meta-analysis. Appetite. 2013;63:92–104.CrossRefGoogle Scholar
  127. 127.
    Chaput JP, Klingenberg L, Astrup A, Sjodin AM. Modern sedentary activities promote overconsumption of food in our current obesogenic environment. Obes Rev. 2011;12(5):e12–20.CrossRefGoogle Scholar
  128. 128.
    Granados K, Stephens BR, Malin SK, Zderic TW, Hamilton MT, Braun B. Appetite regulation in response to sitting and energy imbalance. Appl Physiol Nutr Metab. 2012;37(2):323–33.CrossRefGoogle Scholar
  129. 129.
    Stubbs RJ, Hughes DA, Johnstone AM, Horgan GW, King N, Blundell JE. A decrease in physical activity affects appetite, energy, and nutrient balance in lean men feeding ad libitum. Am J Clin Nutr. 2004;79(1):62–9.Google Scholar
  130. 130.
    Bailey DP, Broom DR, Chrismas BC, Taylor L, Flynn E, Hough J. Breaking up prolonged sitting time with walking does not affect appetite or gut hormone concentrations but does induce an energy deficit and suppresses postprandial glycaemia in sedentary adults. Appl Physiol Nutr Metab. 2016;41(3):324–31.CrossRefGoogle Scholar
  131. 131.
    Hagberg M, Tornqvist EW, Toomingas A. Self-reported reduced productivity due to musculoskeletal symptoms: associations with workplace and individual factors among white-collar computer users. J Occup Rehabil. 2002;12(3):151–62.CrossRefGoogle Scholar
  132. 132.
    Wahlstrom J, Hagberg M, Toomingas A, Wigaeus TE. Perceived muscular tension, job strain, physical exposure, and associations with neck pain among VDU users; a prospective cohort study. Occup Environ Med. 2004;61(6):523–8.CrossRefGoogle Scholar
  133. 133.
    Rocha LE, Glina DM, Marinho Mde F, Nakasato D. Risk factors for musculoskeletal symptoms among call center operators of a bank in Sao Paulo, Brazil. Ind Health. 2005;43(4):637–46.CrossRefGoogle Scholar
  134. 134.
    Korhonen T, Ketola R, Toivonen R, Luukkonen R, Hakkanen M, Viikari-Juntura E. Work related and individual predictors for incident neck pain among office employees working with video display units. Occup Environ Med. 2003;60(7):475–82.CrossRefGoogle Scholar
  135. 135.
    Gerr F, Marcus M, Ensor C, Kleinbaum D, Cohen S, Edwards A, et al. A prospective study of computer users: I. Study design and incidence of musculoskeletal symptoms and disorders. Am J Ind Med. 2002;41(4):221–35.CrossRefGoogle Scholar
  136. 136.
    Ekman A, Andersson A, Hagberg M, Hjelm EW. Gender differences in musculoskeletal health of computer and mouse users in the Swedish workforce. Occup Med (Lond). 2000;50(8):608–13.CrossRefGoogle Scholar
  137. 137.
    Al-Eisa E, Egan D, Deluzio K, Wassersug R. Effects of pelvic asymmetry and low back pain on trunk kinematics during sitting: a comparison with standing. Spine (Phila Pa 1976). 2006;31(5):E135–43.CrossRefGoogle Scholar
  138. 138.
    Braun SI, Kim Y, Jetton AE, Kang M, Morgan DW. Prediction of bone mineral density and content from measures of physical activity and sedentary behavior in younger and older females. Prev Med Rep. 2015;2:300–5.CrossRefGoogle Scholar
  139. 139.
    Pope MH, Goh KL, Magnusson ML. Spine ergonomics. Annu Rev Biomed Eng. 2002;4:49–68.CrossRefGoogle Scholar
  140. 140.
    Chen SM, Liu MF, Cook J, Bass S, Lo SK. Sedentary lifestyle as a risk factor for low back pain: a systematic review. Int Arch Occup Environ Health. 2009;82(7):797–806.CrossRefGoogle Scholar
  141. 141.
    Cote P, van der Velde G, Cassidy JD, Carroll LJ, Hogg-Johnson S, Holm LW, et al. The burden and determinants of neck pain in workers: results of the Bone and Joint Decade 2000-2010 Task Force on Neck Pain and Its Associated Disorders. J Manip Physiol Ther. 2009;32(2 Suppl):S70–86.CrossRefGoogle Scholar
  142. 142.
    Ariens GA, van Mechelen W, Bongers PM, Bouter LM, van der Wal G. Physical risk factors for neck pain. Scand J Work Environ Health. 2000;26(1):7–19.CrossRefGoogle Scholar
  143. 143.
    Bakker EW, Verhagen AP, van Trijffel E, Lucas C, Koes BW. Spinal mechanical load as a risk factor for low back pain: a systematic review of prospective cohort studies. Spine (Phila Pa 1976). 2009;34(8):E281–93.CrossRefGoogle Scholar
  144. 144.
    Waersted M, Hanvold TN, Veiersted KB. Computer work and musculoskeletal disorders of the neck and upper extremity: a systematic review. BMC Musculoskelet Disord. 2010;11:79.CrossRefGoogle Scholar
  145. 145.
    Janwantanakul P, Sitthipornvorakul E, Paksaichol A. Risk factors for the onset of nonspecific low back pain in office workers: a systematic review of prospective cohort studies. J Manip Physiol Ther. 2012;35(7):568–77.CrossRefGoogle Scholar
  146. 146.
    Da Costa BR, Vieira ER. Risk factors for work-related musculoskeletal disorders: a systematic review of recent longitudinal studies. Am J Ind Med. 2010;53(3):285–323.Google Scholar
  147. 147.
    Messing K, Stock S, Cote J, Tissot F. Is sitting worse than static standing? How a gender analysis can move us toward understanding determinants and effects of occupational standing and walking. J Occup Environ Hyg. 2015;12(3):D11–7.CrossRefGoogle Scholar
  148. 148.
    Roelofs A, Straker L. The experience of musculoskeletal discomfort amongst bank tellers who just sit, just stand or sit and stand at work. Ergon J S Afr. 2002;14(2):11–29.Google Scholar
  149. 149.
    Thorp AA, Kingwell BA, Owen N, Dunstan DW. Breaking up workplace sitting time with intermittent standing bouts improves fatigue and musculoskeletal discomfort in overweight/obese office workers. Occup Environ Med. 2014;71(11):765–71.CrossRefGoogle Scholar
  150. 150.
    Latouche C, Jowett JB, Carey AL, Bertovic DA, Owen N, Dunstan DW, et al. Effects of breaking up prolonged sitting on skeletal muscle gene expression. J Appl Physiol. 2013;114(4):453–60.CrossRefGoogle Scholar
  151. 151.
    Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001;30(2):345–54.CrossRefGoogle Scholar
  152. 152.
    Novak CM, Escande C, Burghardt PR, Zhang M, Barbosa MT, Chini EN, et al. Spontaneous activity, economy of activity, and resistance to diet-induced obesity in rats bred for high intrinsic aerobic capacity. Horm Behav. 2010;58(3):355–67.CrossRefGoogle Scholar
  153. 153.
    Novak CM, Kotz CM, Levine JA. Central orexin sensitivity, physical activity, and obesity in diet-induced obese and diet-resistant rats. Am J Physiol Endocrinol Metab. 2006;290(2):E396–403.CrossRefGoogle Scholar
  154. 154.
    Kiwaki K, Kotz CM, Wang C, Lanningham-Foster L, Levine JA. Orexin A (hypocretin 1) injected into hypothalamic paraventricular nucleus and spontaneous physical activity in rats. Am J Physiol Endocrinol Metab. 2004;286(4):E551–9.CrossRefGoogle Scholar
  155. 155.
    Terao A, Apte-Deshpande A, Morairty S, Freund YR, Kilduff TS. Age-related decline in hypocretin (orexin) receptor 2 messenger RNA levels in the mouse brain. Neurosci Lett. 2002;332(3):190–4.CrossRefGoogle Scholar
  156. 156.
    Novak CM, Levine JA. Daily intraparaventricular orexin-A treatment induces weight loss in rats. Obesity. 2009;17(8):1493–8.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Physical Activity, Behavioural Epidemiology, and Metabolic and Vascular Physiology LaboratoriesBaker Heart and Diabetes InstituteMelbourneAustralia
  2. 2.Health SciencesSwinburne University of TechnologyMelbourneAustralia
  3. 3.Faculty of Medicine, Nursing & Health SciencesMonash UniversityMelbourneAustralia
  4. 4.Research Service, Kansas City VA Medical CenterKansas CityUSA
  5. 5.Department of Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityUSA

Personalised recommendations