Implementation of a WLAN Triage Testbed Using Fuzzy Logic: Evaluation for Different Number of Clients

  • Kosuke Ozera
  • Takaaki Inaba
  • Shinji Sakamoto
  • Leonard Barolli
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 612)

Abstract

Many devices communicate over Wireless Local Area Networks (WLANs). The IEEE 802.11e standard for WLANs is an important extension of the IEEE 802.11 standard focusing on QoS that works with any PHY implementation. The IEEE 802.11e standard introduces EDCF and HCCA. Both these schemes are useful for QoS provisioning to support delay-sensitive voice and video applications. EDCF uses the contention window to differentiate high priority and low priority services. However, it does not consider the priority of users. In this paper, in order to deal with this problem, we propose a Fuzzy-based Admission Control System (FACS). We implemented a triage testbed using FACS and carried out an experiment. The experimental results show that the number of connected clients is increased during Avoid phase, but does not change during Monitoring phase.

References

  1. 1.
    Cao, Q., Fujita, S.: Load-balancing schemes for a hierarchical peer-to-peer file search system. Int. J. Grid Util. Comput. 2(2), 164–171 (2011)CrossRefGoogle Scholar
  2. 2.
    Choi, S., Del Prado, J., Mangold, S., et al.: IEEE 802.11e contention-based channel access (EDCF) performance evaluation. In: International Conference on Communications (ICC-2003), vol. 2, pp. 1151–1156 (2003)Google Scholar
  3. 3.
    Elmazi, D., Inaba, T., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: Selection of secure actors in wireless sensor and actor networks using fuzzy logic. In: The 10th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA-2015), pp. 125–131 (2015)Google Scholar
  4. 4.
    Elmazi, D., Sakamoto, S., Oda, T., Kulla, E., Spaho, E., Barolli, L.: Two fuzzy-based systems for selection of actor nodes inwireless sensor and actor networks: a comparison study considering security parameter effect. Mob. Netw. Appl. 21(1), 53–64 (2016)CrossRefGoogle Scholar
  5. 5.
    Gao, D., Cai, J., Ngan, K.N.: Admission control in IEEE802.11e wireless LANs. IEEE Netw. 19(4), 6–13 (2005)CrossRefGoogle Scholar
  6. 6.
    Inaba, T., Elmazi, D., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: A secure-aware call admission control scheme for wireless cellular networks using fuzzy logic and its performance evaluation. J. Mob. Multimedia 11(3&4), 213–222 (2015)Google Scholar
  7. 7.
    Inaba, T., Obukata, R., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: Performance evaluation of a QoS-aware fuzzy-based CAC for LAN access. Int. J. Space Based Situated Comput. 6(4), 228–238 (2016)CrossRefGoogle Scholar
  8. 8.
    Inaba, T., Ozera, K., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: A testbed for admission control in wlans: effects of rssi on connection keep-alive time. In: The 31st IEEE International Conference on Advanced Information Networking and Applications Workshops (WAINA-2017), pp. 722–729. Tamkang University, Taipei, 27–29 March 2017Google Scholar
  9. 9.
    Inaba, T., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: A QoS-Aware admission control system for WLAN using fuzzy logic. In: The 30th International Conference on Advanced Information Networking and Applications Workshops (WAINA-2016), pp. 499–505 (2016)Google Scholar
  10. 10.
    Inaba, T., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: A testbed for admission control in wlan: a fuzzy approach and its performance evaluation. In: The 11th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA-2016), pp. 559–571 (2016)Google Scholar
  11. 11.
    Javanmardi, S., Shojafar, M., Shariatmadari, S., Ahrabi, S.S.: Fr trust: a fuzzy reputation-based model for trust management in semantic p2p grids. Int. J. Grid Util. Comput. 6(1), 57–66 (2014)CrossRefGoogle Scholar
  12. 12.
    Kandel, A.: Fuzzy Expert Systems. CRC Press, Boca Raton (1991)MATHGoogle Scholar
  13. 13.
    Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty, and Information. Prentice Hall, Upper Saddle River (1988)MATHGoogle Scholar
  14. 14.
    Kolici, V., Inaba, T., Lala, A., Mino, G., Sakamoto, S., Barolli, L.: A fuzzy-based cac scheme for cellular networks considering security. In: 2014 17th International Conference on Network-Based Information Systems, pp. 368–373. IEEE (2014)Google Scholar
  15. 15.
    Krithika, P., Pushpavalli, M.: Quality of service optimization in IEEE802.11e networks using enhanced distributed channel access techniques. Int. J. Comput. Netw. Wirel. Commun. (IJCNWC) (2012)Google Scholar
  16. 16.
    Kulla, E., Mino, G., Sakamoto, S., Ikeda, M., Caballé, S., Barolli, L.: FBMIS: a fuzzy-based multi-interface system for cellular and ad hoc networks. In: The 28th IEEE International Conference on Advanced Information Networking and Applications (AINA-2014), pp. 180–185 (2014)Google Scholar
  17. 17.
    Liu, Y., Sakamoto, S., Matsuo, K., Ikeda, M., Barolli, L., Xhafa, F.: Improving reliability of jxta-overlay p2p platform: a comparison study for two fuzzy-based systems. J. High Speed Netw. 21(1), 27–42 (2015)CrossRefGoogle Scholar
  18. 18.
    Liu, Y., Sakamoto, S., Matsuo, K., Ikeda, M., Barolli, L., Xhafa, F.: A comparison study for two fuzzy-based systems: improving reliability and security of JXTA-overlay P2P platform. Soft. Comput. 20(7), 2677–2687 (2016)CrossRefGoogle Scholar
  19. 19.
    Mangold, S., Choi, S., Hiertz, G.R., Klein, O., Walke, B.: Analysis of IEEE 802.11e for QoS support in wireless LANs. Wirel. Commun. 10(6), 40–50 (2003). IEEECrossRefGoogle Scholar
  20. 20.
    Mangold, S., Choi, S., May, P., Klein, O., Hiertz, G., Stibor, L.: IEEE80211e wireless LAN for quality of service. Proc. Eur. Wirel. 2, 32–39 (2002)Google Scholar
  21. 21.
    Matsuo, K., Elmazi, D., Liu, Y., Sakamoto, S., Mino, G., Barolli, L.: Facs-mp: a fuzzy admission control system with many priorities for wireless cellular networks and its performance evaluation. J. High Speed Net. 21(1), 1–14 (2015)CrossRefGoogle Scholar
  22. 22.
    McNeill, F.M., Thro, E.: Fuzzy Logic: A Practical Approach. Academic Press, Cambridge (1994)MATHGoogle Scholar
  23. 23.
    Munakata, T., Jani, Y.: Fuzzy systems: an overview. Commun. ACM 37(3), 68–76 (1994)CrossRefGoogle Scholar
  24. 24.
    Ozera, K., Inaba, T., Elmazi, D., Sakamoto, S., Oda, T., Barolli, L.: A fuzzy approach for secure clustering in manets: Effects of distance parameter on system performance. In: The 31st IEEE International Conference on Advanced Information Networking and Applications Workshops (WAINA-2017), pp. 251–258. Tamkang University, Taipei, 27–29 March 2017Google Scholar
  25. 25.
    Procyk, T.J., Mamdani, E.H.: A linguistic self-organizing process controller. Automatica 15(1), 15–30 (1979)CrossRefMATHGoogle Scholar
  26. 26.
    Qashi, R., Bogdan, M., Hänssgen, K.: Evaluating the QoS of WLANs for the IEEE802.11 EDCF in real-time applications. In: International Conference on Communications and Information Technology (ICCIT-2011), pp. 32–35 (2011)Google Scholar
  27. 27.
    Romdhani, L., Ni, Q., Turletti, T.: Adaptive EDCF: enhanced Service Differentiation for IEEE802.11 wireless Ad-hoc Networks. In: Wireless Communications and Networking (WCNC-2003), vol. 2, pp. 1373–1378 (2003)Google Scholar
  28. 28.
    Sakamoto, S., Oda, T., Ikeda, M., Barolli, L., Xhafa, F.: Implementation and evaluation of a simulation system based on particle swarm optimisation for node placement problem in wireless mesh networks. Int. J. Commun. Netw. Distrib. Syst. 17(1), 1–13 (2016)CrossRefGoogle Scholar
  29. 29.
    Song, N.O., Kwak, B.J., Song, J., Miller, L.E.: Enhancement of IEEE802.11 distributed coordination function with exponential increase exponential decrease backoff algorithm. In: The 57th IEEE Semiannual Vehicular Technology Conference, vol. 4, pp. 2775–2778 (2003)Google Scholar
  30. 30.
    Spaho, E., Sakamoto, S., Barolli, L., Xhafa, F., Ikeda, M.: Trustworthiness in P2P: performance behaviour of two fuzzy-based systems for JXTA-overlay platform. Soft. Comput. 18(9), 1783–1793 (2014)CrossRefGoogle Scholar
  31. 31.
    Uchida, K., Takematsu, M., Lee, J.H., Honda, J.: A particle swarm optimisation algorithm to generate inhomogeneous triangular cells for allocating base stations in urban and suburban areas. Int. J. Space Based Situated Comput. 3(4), 207–214 (2013)CrossRefGoogle Scholar
  32. 32.
    Wu, H., Peng, Y., Long, K., Cheng, S., Ma, J.: Performance of reliable transport protocol over IEEE802.11 wireless LAN: analysis and enhancement. In: The 21st Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 599–607 (2002)Google Scholar
  33. 33.
    Yang, X., Vaidya, N.H.: Priority scheduling in wireless ad hoc networks. In: Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 71–79 (2002)Google Scholar
  34. 34.
    Zadeh, L.A., Kacprzyk, J.: Fuzzy Logic for the Management of Uncertainty. Wiley, Hoboken (1992)Google Scholar
  35. 35.
    Zhu, J., Fapojuwo, A.O.: A new call admission control method for providing desired throughput and delay performance in IEEE802.11e wireless LANs. IEEE Trans. Wireless Commun. 6(2), 701–709 (2007)CrossRefGoogle Scholar
  36. 36.
    Zimmermann, H.J.: Fuzzy Set Theory and Its Applications. Springer, Heidelberg (1991)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Kosuke Ozera
    • 1
  • Takaaki Inaba
    • 1
  • Shinji Sakamoto
    • 1
  • Leonard Barolli
    • 2
  1. 1.Department of Information and Communication EngineeringFukuoka Institute of Technology (FIT)FukuokaJapan
  2. 2.Department of Information and Communication EngineeringFukuoka Institute of Technology (FIT)FukuokaJapan

Personalised recommendations