Skip to main content

Treatment Planning in Radiation Therapy

  • Chapter
  • First Online:
An Introduction to Medical Physics

Abstract

Radiation therapy is the clinical use of ionizing radiation as part of a comprehensive cancer treatment to eradicate malignant/cancerous cells. It works by damaging the DNA of cancerous cells, which is the primary cause of cell death. Normal cells are also damaged by ionizing radiation; however, they generally have a better recovery mechanism than the cancerous cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahnesjö A (1989) Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys 16(4):577–592

    Article  Google Scholar 

  • Ahnesjö A, Aspradakis MM (1999) Dose calculations for external photon beams in radiotherapy. Phys Med Biol 44(1):R99–R155

    Article  Google Scholar 

  • Bortfeld T, Biirkelbach J, Boesecke R, Schlegel W (1990a) Methods of image reconstruction from projections applied to conformation radiotherapy. Phys Med Biol 35(10):1423–1434

    Article  Google Scholar 

  • Bortfeld TR, Burkelbach J, Boesecke R (1990b) Methods of image reconstruction from projections applied to conformation therapy. Phys Med Biol 35:1423–1434

    Article  Google Scholar 

  • Boyer AL, Ochran TG, Nyerick E, Waldron JT, Huntzinger JC (1992) Clinical dosimetry for implementation of a multileaf collimator. Med Phys 19:1255–1261

    Article  Google Scholar 

  • Clarkson JR (1941) A note on depth doses in fields of irregular shape. Br J Radiol 14:265

    Article  Google Scholar 

  • Convery DJ, Rosenbloom ME (1992) The generation of intensity-modulated fields for conformal radiotherapy by dynamic collimation. Phys Med Biol 37:1359–1374

    Article  Google Scholar 

  • Cunningham JR, Shrivastava PN, Wilkinson JM (1972) Program IRREG-calculation of dose from irregularly shaped radiation beams. Comput Programs Biomed 2(3):192–199

    Article  Google Scholar 

  • Curry TS, Dowdey JE, Murry RC (1990) Christensen’s physics of diagnostic radiology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Drzymala RE, Mohan R, Brewster L (1991) Dose-volume histograms. Int J Radiat Oncol Biol Phys 15(21):71–78

    Article  Google Scholar 

  • Dyk JV (1999) Computerized radiation treatment planning systems. In: The modern technology of radiation oncology : a compendium for medical physicists and radiation oncologists. Medical Physics Publishing, Madison

    Google Scholar 

  • Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 15(21):109–122

    Article  Google Scholar 

  • Ferreri AJ, Dell’Oro S, Reni M, Ceresoli GL, Cozzarini C, Ponzoni M, Villa E (2000) Consolidation radiotherapy to bulky or semibulky lesions in the management of stage iii-iv diffuse large b cell lymphomas. Oncology:219–226

    Google Scholar 

  • Fodo J, Polgar C, Nemeth G (2000) Evidence-based radiotherapy in the treatment of operable breast cancer: results. Orszagos Onkologiai Intezet 141(28):1551–1555

    Google Scholar 

  • Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L (2011) Accuracy of Acuros XB and AAA dose calculation for small fields with reference to RapidArc® stereotactic treatments. MedPhys 38(11):6228–6237

    ADS  Google Scholar 

  • Galvin JM, Smith AR, Lally B (1993) Characterization of a multileaf collimator system. Int J Radiat Oncol Biol Phys 25:181–192

    Article  Google Scholar 

  • Giessen PH (1973) A method of calculating the isodose shift in correcting for oblique incidence in radiotherapy. Br J Radiol 46:978

    Article  Google Scholar 

  • Hall EJ, Giaccia AJ (2006) Radiobiology for the radiologist, vol 6th. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Halperin EC, Perez CA, Brady LW (2008a) Photon external-beam dosimetry and treatment planning. In: Perez and Brady’s principles and practice of radiation oncology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 166–189

    Google Scholar 

  • Halperin EC, Perez CA, Brady LW (2008b) Electron-beam therapy: dosimetry, planning, and techniques. In: Perez and Brady’s principles and practice of radiation oncology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 190–217

    Google Scholar 

  • Han T, Mikell JK, Salehpour M, Mourtada F (2011) Dosimetric comparison of Acuros XB deterministic radiation transport method with Monte Carlo and model-based convolution methods in heterogeneous media. Med Phys 38(5):2651–2664

    Article  Google Scholar 

  • Holmes T, Mackie TR (1994) A filtered back projection dose calculation method for inverse treatment planning. Med Phys 21:303–313

    Article  Google Scholar 

  • IMRT Collaborative Working Group (2001) Intensity-modulated radiotherapy: current status and issues of interest. Int J Radiat Oncol Biol Phys 51(4):880–914

    Article  Google Scholar 

  • International Commission on Radiation Units and Measurements (ICRU) (1993) Prescribing, recording, and reporting photon beam therapy. ICRU report 50. ICRU, Bethesda

    Google Scholar 

  • International Commission on Radiation Units and Measurements (ICRU) (1999) Prescribing, recording, and reporting photon beam therapy (supplement to ICRU report 50). ICRU report 62. ICRU, Bethesda

    Google Scholar 

  • International Commission on Radiation Units and Measurements. Bethesda (2004) ICRU report 71 “prescribing, recording, and reporting electron beam therapy”. J ICRU 4(1):39–48

    Google Scholar 

  • Keller-Reichenbecher MA, Bortfeld T, Levegrün S, Stein J, Preiser K, Schlegel W (1999) Intensity modulation with the “step and shoot” technique using a commercial MLC: a planning study. Int J Radiat Oncol Biol Phys 45(5):1315–1324. Multileaf collimator

    Article  Google Scholar 

  • Khan FM (2010) The physics of radiation therapy. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Khan FM, Higgins PD (2001) Field equivalence for clinical electron beams. Phys Med Biol 46:N9–N14

    Article  Google Scholar 

  • Khan FM, Moore VC, Burns DJ (1970) The construction of compensators for cobalt teletherapy. Radiology 96:187

    Article  Google Scholar 

  • Knoos T, Wieslander E, Cozzi L, Brink C, Fogliata A, Albers D, Nystrm H, Lassen S (2006) Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations. Phys Med Biol 21(51):5785–5807

    Article  Google Scholar 

  • Kramme R, Hoffmann K, Pozos R (2011) Medical radiation therapy, Springer handbook of medical technology. Springer, New York, p 703

    Google Scholar 

  • LoSasso T, Chui C, Ling CC (1998) Physical and dosimetric aspects of a multileaf collimation system used in the dynamic mode for implementing intensity modulated radiotherapy. Med Phys 25(10):1919–1927

    Article  Google Scholar 

  • Mackie TR, Scrimger JW, Battista JJ (1985) A convolution method of calculating dose for 15-MV x rays. Med Phys 12(2):188–196

    Article  Google Scholar 

  • Mohan R, Chui C, Lidofsky L (1986) Differential pencil beam dose computation model for photons. Med Phys 13(1):64–73

    Article  Google Scholar 

  • Nakaguchi Y, Araki F, Maruyama M, Fukuda S (2010) Comparison of RTPS and Monte Carlo dose distributions in heterogeneous phantoms for photon beams. Nihon Hoshasen Gijutsu Gakkai Zasshi 20(66):322–333

    Article  Google Scholar 

  • Podgorsak EB, IAEA (2005) Radiation oncology physics a handbook for teachers and students. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Porter A, Aref A, Chodounsky Z, Elzawawy A, Manatrakul N, Ngoma T, Orton C, Van't H, Sikora K (1999) A global strategy for radiotherapy: a WHO consultation. Clin Oncol (R Coll Radiol) 11(6):368–370

    Article  Google Scholar 

  • Sewchand W, Khan FM, Williamson J (1978) Variations in depth-dose data between open and wedge fields for 4-MV X-rays. Radiology 127(3):789–792

    Article  Google Scholar 

  • Sewchand W, Bautro N, Scott RM (1980) Basic data of tissue-equivalent compensators for 4 MV x-rays. Int J Radiat Oncol Biol Phys 6:327

    Article  Google Scholar 

  • Sievinen J, Ulmer W, Kaissl W (2007) Eclipse algorithms reference guide, vol P/N B500298R01C. Varian Medical Systems, Palo Alto, pp 1–18

    Google Scholar 

  • Sofia JW (1979) Computer controlled, multileaf collimator for rotational radiation therapy. Am J Roentgeno 133(5):956–957

    Article  Google Scholar 

  • Sontag MR, Cunningham JR (1978) The equivalent tissue-air ratio method for making absorbed dose calculations in a heterogeneous medium. Radiology 129(3):787–794

    Article  Google Scholar 

  • Sterling TD, Perry H, Katz I (1964) Derivation of a mathematical expression for the percent depth dose surface of cobalt 60 beams and visualization of multiple field dose distributions. Br J Radiol 37:544–550

    Article  Google Scholar 

  • Tung A, Shiu SS, Nyerick CE, Ochran T, Otte VA, Boyer AL, Hogstrom KR (1994) Comprehensive analysis of electron beam central axis dose for a radiotherapy linear accelerator. Med Phys 21:559–566

    Article  Google Scholar 

  • Ulmer W, Harder D (1996) Applications of a triple gaussian pencil beam model for photon beam treatment planning. Z Med Phys 6:68–74

    Article  Google Scholar 

  • Ulmer W, Kaissl W (2003) The inverse problem of a gaussian convolution and its application to the finite size of the measurement chambers/detectors in photon and proton dosimetry. Phys Med Biol 48(6):707–727

    Article  Google Scholar 

  • Ulmer W, Pyyry J, Kaissl W (2005) A 3d photon superposition/convolution algorithm and its foundation on results of monte carlo calculations. Phys Med Biol 50(8):1767–1790

    Article  Google Scholar 

  • Vargas C, Kestin L, Weed D, Krauss D, Vicini F, Martinez A (2005) Improved biochemical outcome with adjuvant radiotherapy after radical prostatectomy for prostate cancer with poor pathologic features. Int J Radiat Oncol Biol Phys 61(3):714–724

    Article  Google Scholar 

  • Webb S (1989) Optimization of conformal dose distributions by simulated annealing. Phys Med Biol 34:1349–1370

    Article  Google Scholar 

  • Webb S (1997) The physics of conformal radiotherapy. IOP Publishing Ltd., Bristol

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad Hussain PhD, MCCPM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, A., Muhammad, W. (2017). Treatment Planning in Radiation Therapy. In: Maqbool, M. (eds) An Introduction to Medical Physics. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-61540-0_4

Download citation

Publish with us

Policies and ethics