Enhancing Functional Metagenomics of Complex Microbial Communities Using Stable Isotopes

  • Marcela Hernández
  • Josh D. Neufeld
  • Marc G. DumontEmail author


Exploring the function of genes encoded by uncultivated microorganisms is one of the major challenges facing microbiologists. Functions can be predicted by sequence comparisons to known genes and proteins, but proof of function requires the analysis of gene products by in vitro or in vivo expression, which is referred to as functional metagenomics. Using this approach, genetic material is retrieved from the environment, cloned, and expressed under laboratory conditions in order to screen for specific biochemical activities. Stable-isotope probing (SIP) is an approach for capturing genetic material of active microorganisms in environmental samples. This method facilitates functional metagenomics by directing the search toward microorganisms that are likely to possess genes of relevance to a specific research objective. In this chapter, we discuss how combined DNA-SIP and metagenomic research has been used for enhancing functional screening efforts. In addition, we highlight emerging methods, such as mRNA-SIP and Raman microspectroscopy, that can help retrieve genetic material from targeted microbial groups for the discovery of novel functions.


  1. Abubucker S, Segata N, Goll J et al (2012) Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 8:e1002358CrossRefPubMedPubMedCentralGoogle Scholar
  2. Berry D, Mader E, Lee TK et al (2015) Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci U S A 112:194–203CrossRefGoogle Scholar
  3. Binga EK, Lasken RS, Neufeld JD (2008) Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology. ISME J 2:233–241CrossRefPubMedGoogle Scholar
  4. Boschker HTS, Nold SC, Wellsbury P et al (1998) Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392:801–805CrossRefGoogle Scholar
  5. Caspi R, Altman T, Dreher K et al (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 40:742–753CrossRefGoogle Scholar
  6. Chen Y, Murrell JC (2010) When metagenomics meets stable-isotope probing: progress and perspectives. Trends Microbiol 18:157–163CrossRefPubMedGoogle Scholar
  7. Chen Y, Dumont MG, Neufeld JD et al (2008) Revealing the uncultivated majority: combining DNA stable-isotope probing, multiple displacement amplification and metagenomic analyses of uncultivated Methylocystis in acidic peatlands. Environ Microbiol 10:2609–2622CrossRefPubMedGoogle Scholar
  8. Chen Y, Vohra J, Murrell JC (2010) Applications of DNA-stable isotope probing in bioremediation studies. Methods Mol Biol 599:129–139CrossRefPubMedGoogle Scholar
  9. Dumont MG, Radajewski SM, Miguez CB et al (2006) Identification of a complete methane monooxygenase operon from soil by combining stable isotope probing and metagenomic analysis. Environ Microbiol 8:1240–1250CrossRefPubMedGoogle Scholar
  10. Dumont MG, Pommerenke B, Casper P et al (2011) DNA-, rRNA- and mRNA-based stable isotope probing of aerobic methanotrophs in lake sediment. Environ Microbiol 13:1153–1167CrossRefPubMedGoogle Scholar
  11. Dumont MG, Pommerenke B, Casper P (2013) Using stable isotope probing to obtain a targeted metatranscriptome of aerobic methanotrophs in lake sediment. Environ Microbiol Rep 5:757–764PubMedGoogle Scholar
  12. Eyice Ö, Namura M, Chen Y et al (2015) SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment. ISME J 9:2336–2348CrossRefPubMedPubMedCentralGoogle Scholar
  13. Friedrich MW (2006) Stable-isotope probing of DNA: insights into the function of uncultivated microorganisms from isotopically labeled metagenomes. Curr Opin Biotechnol 17:59–66CrossRefPubMedGoogle Scholar
  14. Gilbert JA, Dupont CL (2011) Microbial metagenomics: beyond the genome. Annu Rev Mar Sci 3:347–371CrossRefGoogle Scholar
  15. Greenblum S, Turnbaugh PJ, Borenstein E (2011) Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A 109:594–599CrossRefPubMedPubMedCentralGoogle Scholar
  16. Huang WE, Ferguson A, Singer AC et al (2009) Resolving genetic functions within microbial populations: in situ analyses using rRNA and mRNA stable isotope probing coupled with single-cell Raman-fluorescence in situ hybridization. Appl Environ Microbiol 75:234–241CrossRefPubMedGoogle Scholar
  17. Hug LA, Baker BJ, Anantharaman K et al (2016) A new view of the tree of life. Nat Microbiol 1:16048CrossRefPubMedGoogle Scholar
  18. Huttenhower C, Gevers D, Knight R et al (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214CrossRefGoogle Scholar
  19. Jehmlich N, Schmidt F, Hartwich M et al (2008a) Incorporation of carbon and nitrogen atoms into proteins measured by protein-based stable isotope probing (protein-SIP). Rapid Commun Mass Spectrom 22:2889–2897CrossRefPubMedGoogle Scholar
  20. Jehmlich N, Schmidt F, von Bergen M et al (2008b) Protein-based stable isotope probing (protein-SIP) reveals active species within anoxic mixed cultures. ISME J 2:1122–1133CrossRefPubMedGoogle Scholar
  21. Jehmlich N, Schmidt F, Taubert M et al (2009) Comparison of methods for simultaneous identification of bacterial species and determination of metabolic activity by protein-based stable isotope probing (protein-SIP) experiments. Rapid Commun Mass Spectrom 23:1871–1878CrossRefPubMedGoogle Scholar
  22. Kalyuzhnaya MG, Lapidus A, Ivanova N et al (2008) High-resolution metagenomics targets specific functional types in complex microbial communities. Nat Biotechnol 26:1029–1034CrossRefPubMedGoogle Scholar
  23. Kanehisa M, Goto S, Sato Y et al (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:109–114CrossRefGoogle Scholar
  24. Kim SJ, Lee CM, Han BR et al (2008) Characterization of a gene encoding cellulase from uncultured soil bacteria. FEMS Microbiol Lett 282:44–51CrossRefPubMedGoogle Scholar
  25. Kindaichi T, Ito T, Okabe S (2004) Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization. Appl Environ Microbiol 70:1641–1650CrossRefPubMedPubMedCentralGoogle Scholar
  26. Li M, Boardman DG, Ward A (2014) Single-cell Raman sorting. Methods Mol Biol 1096:147–153CrossRefPubMedGoogle Scholar
  27. Liu J, Liu WD, Zhao XL et al (2011) Cloning and functional characterization of a novel endo-beta-1,4-glucanase gene from a soil-derived metagenomic library. Appl Microbiol Biotechnol 89:1083–1092CrossRefPubMedGoogle Scholar
  28. Manefield M, Whiteley AS, Griffiths RI et al (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68:5367–5373CrossRefPubMedPubMedCentralGoogle Scholar
  29. Musat N, Foster R, Vagner T, Adam B, Kuypers MM (2012) Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev 36:486–511CrossRefPubMedGoogle Scholar
  30. Nacke H, Engelhaupt M, Brady S et al (2012) Identification and characterization of novel cellulolytic and hemicellulolytic genes and enzymes derived from German grassland soil metagenomes. Biotechnol Lett 34:663–675CrossRefPubMedGoogle Scholar
  31. Neufeld JD, Dumont MG, Vohra J et al (2007) Methodological considerations for the use of stable isotope probing in microbial ecology. Microb Ecol 53:435–442CrossRefPubMedGoogle Scholar
  32. Neufeld JD, Chen Y, Dumont MG et al (2008) Marine methylotrophs revealed by stable-isotope probing, multiple displacement amplification and metagenomics. Environ Microbiol 10:1526–1535CrossRefPubMedGoogle Scholar
  33. Orphan VJ, House CH, Hinrichs KU et al (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487CrossRefPubMedGoogle Scholar
  34. Pinnell LJ, Charles TC, Neufeld JD (2011) Stable-isotope probing and metagenomics. In: Murrell JC, Whiteley AS (eds) Stable isotopes in microbial molecular ecology. ASM Press, Washington, DC, pp 97–114Google Scholar
  35. Pinnell LJ, Dunford E, Ronan P et al (2014) Recovering glycoside hydrolase genes from active tundra cellulolytic bacteria. Can J Microbiol 60:469–476CrossRefPubMedGoogle Scholar
  36. Powell S, Szklarczyk D, Trachana K et al (2012) eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic Acids Res 40:284–289CrossRefGoogle Scholar
  37. Radajewski S, Ineson P, Parekh NR et al (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649CrossRefPubMedGoogle Scholar
  38. Rappe MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394CrossRefPubMedGoogle Scholar
  39. Read DS, Whiteley AS (2011) Identity and function of single microbial cells within a community by Raman Microspectroscopy and related single-cell techniques. In: Sen K, Ashbolt NJ (eds) Environmental microbiology: current technology and water applications. Horizon Press, Poole, pp 163–178Google Scholar
  40. Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552CrossRefPubMedGoogle Scholar
  41. Rinke C, Schwientek P, Sczyrba A et al (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437CrossRefPubMedGoogle Scholar
  42. Saidi-Mehrabad A, He Z, Tamas I et al (2013) Methanotrophic bacteria in oilsands tailings ponds of northern Alberta. ISME J 7:908–921CrossRefPubMedGoogle Scholar
  43. Schwarz S, Waschkowitz T, Daniel R (2006) Enhancement of gene detection frequencies by combining DNA-based stable-isotope probing with the construction of metagenomic DNA libraries. World J Microbiol Biotechnol 22:363–367CrossRefGoogle Scholar
  44. Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77:1153–1161CrossRefPubMedGoogle Scholar
  45. Sul WJ, Park J, Quensen JF 3rd et al (2009) DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Appl Environ Microbiol 75:5501–5506CrossRefPubMedPubMedCentralGoogle Scholar
  46. Tank M, Bryant DA (2015) Nutrient requirements and growth physiology of the heterotrophic Acidobacterium, Chloracidobacterium thermophilum. Front Microbiol 6:226CrossRefPubMedPubMedCentralGoogle Scholar
  47. Tatusov RL, Fedorova ND, Jackson JD et al (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41CrossRefPubMedPubMedCentralGoogle Scholar
  48. Tillmann S, Strömpl C, Timmis KN et al (2005) Stable isotope probing reveals the dominant role of Burkholderia species in aerobic degradation of PCBs. FEMS Microbiol Ecol 52:207–217CrossRefPubMedGoogle Scholar
  49. Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245CrossRefPubMedGoogle Scholar
  50. Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484CrossRefPubMedGoogle Scholar
  51. Uhlik O, Leewis MC, Strejcek M et al (2013) Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnol Adv 31:154–165CrossRefPubMedGoogle Scholar
  52. Verastegui Y, Cheng J, Engel K et al (2014) Multisubstrate isotope labeling and metagenomic analysis of active soil bacterial communities. mBio 5:e01157–e01114CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wackett LP (2015) Specialty chemicals from microbes: an annotated selection of World Wide Web sites relevant to the topics in microbial biotechnology. Microb Biotechnol 8:614–615CrossRefPubMedCentralGoogle Scholar
  54. Wagner M (2009) Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu Rev Microbiol 63:411–429CrossRefPubMedGoogle Scholar
  55. Wang F, Li F, Chen G et al (2009) Isolation and characterization of novel cellulase genes from uncultured microorganisms in different environmental niches. Microbiol Res 164:650–657CrossRefPubMedGoogle Scholar
  56. Wang Y, Chen Y, Zhou Q et al (2012) A culture-independent approach to unravel uncultured bacteria and functional genes in a complex microbial community. PLoS One 7:e47530CrossRefPubMedPubMedCentralGoogle Scholar
  57. Weinstock GM (2012) Genomic approaches to studying the human microbiota. Nature 489:250–256CrossRefPubMedPubMedCentralGoogle Scholar
  58. Wilke A, Harrison T, Wilkening J et al (2012) The M5nr: a novel non-redundant database containing protein sequences and annotations from multiple sources and associated tools. BMC Bioinformatics 13:141CrossRefPubMedPubMedCentralGoogle Scholar
  59. Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marcela Hernández
    • 1
    • 2
  • Josh D. Neufeld
    • 3
  • Marc G. Dumont
    • 2
    Email author
  1. 1.Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
  2. 2.Biological SciencesUniversity of SouthamptonSouthamptonUK
  3. 3.Department of BiologyUniversity of WaterlooWaterlooCanada

Personalised recommendations