Challenges and Opportunities in Discovery of Secondary Metabolites Using a Functional Metagenomic Approach

  • Alinne L. R. Santana-Pereira
  • Mark R. LilesEmail author


Bioprospecting for natural products via a metagenomic approach has been highly successful for enzyme discovery, yet methodological challenges have inhibited discovery of diverse secondary metabolites from environmental metagenomes. In this chapter, we discuss metagenomic approaches to identify and/or express secondary metabolites encoded from environmental DNA. The application of next-generation sequencing techniques has generated enormous metagenomic sequence databases for polyketide synthases. Isolated biosynthetic pathways can be introduced into multiple heterologous hosts, with some hosts engineered for expression of specific pathways. The goal of tapping into the extant diversity of secondary metabolites encoded by environmental metagenomes is being enabled by a combination of approaches, including advances in NGS technology, cloning methods, high-throughput screening, development of improved heterologous hosts, and pathway engineering.


  1. Aakvik T, Degnes KF, Dahlsrud R, Schmidt F, Dam R, Yu L et al (2009) A plasmid RK2-based broad-host-range cloning vector useful for transfer of metagenomic libraries to a variety of bacterial species. FEMS Microbiol Lett 296(2):149–158. doi: 10.1111/j.1574-6968.2009.01639.x CrossRefPubMedGoogle Scholar
  2. Ansari MZ, Yadav G, Gokhale RS, Mohanty D (2004) NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res 32(Web Server Issue):W405–W413. doi: 10.1093/nar/gkh359 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Banik JJ, Brady SF (2010) Recent application of metagenomic approaches toward the discovery of antimicrobials and other bioactive small molecules. Curr Opin Microbiol 13(5):603–609. doi: 10.1016/j.mib.2010.08.012 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Berdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58(1):1–26. doi: 10.1038/ja.2005.1 CrossRefGoogle Scholar
  5. Blin K, Medema MH, Kottmann R, Lee SY, Weber T (2016). The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters. Nucleic acids research, gkw960. doi: 10.1093/nar/gkw960
  6. Brady SF, Clardy J (2000) Long-chain N-acyl amino acid antibiotics isolated from heterologously expressed environmental DNA. J Am Chem Soc 122(51):12903–12904. doi: 10.1021/ja002990u CrossRefGoogle Scholar
  7. Brady SF, Clardy J (2005) Cloning and heterologous expression of isocyanide biosynthetic genes from environmental DNA. Angew Chem Int Ed Engl 44(43):7063–7065. doi: 10.1002/anie.200501941 CrossRefPubMedGoogle Scholar
  8. Brady SF, Chao CJ, Clardy J (2004) Long-chain N-acyltyrosine synthases from environmental DNA. Appl Environ Microbiol 70(11):6865–6870. doi: 10.1128/AEM.70.11.6865-6870.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brooks JP, Edwards DJ, Harwich MD Jr, Rivera MC, Fettweis JM, Serrano MG et al (2015) The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies. BMC Microbiol 15(1):66. doi: 10.1186/s12866-015-0351-6 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cacho RA, Tang Y, Chooi YH (2014) Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi. Front Microbiol 5:774. doi: 10.3389/fmicb.2014.00774 PubMedGoogle Scholar
  11. Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci U S A 100(Suppl 2):14555–14561. doi: 10.1073/pnas.1934677100 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chang F-YY, Brady SF (2013a) Discovery of indolotryptoline antiproliferative agents by homology-guided metagenomic screening. Proc Natl Acad Sci U S A 110(7):2478–2483. doi: 10.1073/pnas.1218073110 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chang FY, Brady SF (2013b) Discovery of indolotryptoline antiproliferative agents by homology-guided metagenomic screening. Proc Natl Acad Sci U S A 110(7):2478–2483. doi: 10.1073/pnas.1218073110 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Charlop-Powers Z, Banik JJ, Owen JG, Craig JW, Brady SF (2013) Selective enrichment of environmental DNA libraries for genes encoding nonribosomal peptides and polyketides by phosphopantetheine transferase-dependent complementation of siderophore biosynthesis. ACS Chem Biol 8(1):138–143. doi: 10.1021/cb3004918 CrossRefPubMedGoogle Scholar
  15. Chatterjee C, Paul M, Xie L, van der Donk WA (2005) Biosynthesis and mode of action of lantibiotics. Chem Rev 105(2):633–684. doi: 10.1021/cr030105v CrossRefPubMedGoogle Scholar
  16. Cheng J, Pinnell L, Engel K, Neufeld JD, Charles TC (2014) Versatile broad-host-range cosmids for construction of high quality metagenomic libraries. J Microbiol Methods 99:27–34. doi: 10.1016/j.mimet.2014.01.015 CrossRefPubMedGoogle Scholar
  17. Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland Brown LC, Mavrommatis K et al (2014) Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158(2):412–421. doi: 10.1016/j.cell.2014.06.034 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Coughlan LM, Cotter PD, Hill C (2015) Biotechnological applications of functional metagenomics in the food and pharmaceutical industries. Front Microbiol 6:672. doi: 10.3389/fmicb.2015.00672 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Courtois S, Cappellano CM, Ball M, Francou FX, Normand P, Helynck G et al (2003) Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl Environ Microbiol 69(1):49–55. doi: 10.1128/AEM.69.1.49-55.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830(6):3670–3695. doi: 10.1016/j.bbagen.2013.02.008 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Craig JW, Chang F-Y, Brady SF (2009) Natural products from environmental DNA hosted in Ralstonia metallidurans. ACS Chem Biol 4(1):23–28. doi: 10.1021/cb8002754 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Craig JW, Chang FY, Kim JH, Obiajulu SC, Brady SF (2010) Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse proteobacteria. Appl Environ Microbiol 76(5):1633–1641. doi: 10.1128/AEM.02169-09 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Craney A, Ozimok C, Pimentel-Elardo SM, Capretta A, Nodwell JR (2012) Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. Chem Biol 19(8):1020–1027. doi: 10.1016/j.chembiol.2012.06.013 CrossRefPubMedGoogle Scholar
  24. Cronan JE, Thomas J (2009) Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol 459:395–433. doi: 10.1016/S0076-6879(09)04617-5 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Culligan EP, Sleator RD, Marchesi JR, Hill C (2014) Metagenomics and novel gene discovery: promise and potential for novel therapeutics. Virulence 5(3):399–412. doi: 10.4161/viru.27208 CrossRefPubMedGoogle Scholar
  26. Darling AE, Jospin G, Lowe E, Matsen FA 4th, Bik HM, Eisen JA (2014) PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ 2:e243. doi: 10.7717/peerj.243 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Du L, Lou L (2010) PKS and NRPS release mechanisms. Nat Prod Rep 27(2):255–278. doi: 10.1039/b912037h CrossRefPubMedGoogle Scholar
  28. Du L, Sanchez C, Shen B (2001) Hybrid peptide-polyketide natural products: biosynthesis and prospects toward engineering novel molecules. Metab Eng 3(1):78–95. doi: 10.1006/mben.2000.0171 CrossRefPubMedGoogle Scholar
  29. Ennahar S, Sashihara T, Sonomoto K, Ishizaki A (2000) Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24(1):85–106. doi: 10.1016/S0168-6445(99)00031-5 CrossRefPubMedGoogle Scholar
  30. Felczykowska A, Dydecka A, Bohdanowicz M, Gasior T, Sobon M, Kobos J et al (2014) The use of fosmid metagenomic libraries in preliminary screening for various biological activities. Microb Cell Fact 13(1):105. doi: 10.1186/s12934-014-0105-4 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Feng Z, Kallifidas D, Brady SF (2011) Functional analysis of environmental DNA-derived type II polyketide synthases reveals structurally diverse secondary metabolites. Proc Natl Acad Sci U S A 108(31):12629–12634. doi: 10.1073/pnas.1103921108 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fieseler L, Hentschel U, Grozdanov L, Schirmer A, Wen G, Platzer M et al (2007) Widespread occurrence and genomic context of unusually small polyketide synthase genes in microbial consortia associated with marine sponges. Appl Environ Microbiol 73(7):2144–2155. doi: 10.1128/AEM.02260-06 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Foerstner KU, Doerks T, Creevey CJ, Doerks A, Bork P (2008) A computational screen for type I polyketide synthases in metagenomics shotgun data. PLoS One 3(10):e3515. doi: 10.1371/journal.pone.0003515 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Foulston LC, Bibb MJ (2010) Microbisporicin gene cluster reveals unusual features of lantibiotic biosynthesis in actinomycetes. Proc Natl Acad Sci U S A 107(30):13461–13466. doi: 10.1073/pnas.1008285107 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Fu J, Bian X, Hu S, Wang H, Huang F, Seibert PM et al (2012) Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol 30(5):440–446. doi: 10.1038/nbt.2183 CrossRefPubMedGoogle Scholar
  36. Gabrielsen C, Brede DA, Nes IF, Diep DB (2014) Circular bacteriocins: biosynthesis and mode of action. Appl Environ Microbiol 80(22):6854–6862. doi: 10.1128/AEM.02284-14 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gaida SM, Sandoval NR, Nicolaou SA, Chen Y, Venkataramanan KP, Papoutsakis ET (2015) Expression of heterologous sigma factors enables functional screening of metagenomic and heterologous genomic libraries. Nat Commun 6:7045. doi: 10.1038/ncomms8045 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ginolhac A, Jarrin C, Gillet B, Robe P, Pujic P, Tuphile K et al (2004) Phylogenetic analysis of polyketide synthase I domains from soil metagenomic libraries allows selection of promising clones. Appl Environ Microbiol 70(9):5522–5527. doi: 10.1128/AEM.70.9.5522-5527.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gomez-Escribano JP, Bibb MJ (2014) Heterologous expression of natural product biosynthetic gene clusters in Streptomyces coelicolor: from genome mining to manipulation of biosynthetic pathways. J Ind Microbiol Biotechnol 41(2):425–431. doi: 10.1007/s10295-013-1348-5 CrossRefPubMedGoogle Scholar
  40. Gomez-Escribano JP, Song LJ, Fox DJ, Yeo V, Bibb MJ, Challis GL (2012) Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145. Chem Sci 3(9):2716–2720. doi: 10.1039/c2sc20410j CrossRefGoogle Scholar
  41. Haley JD (1988) Cosmid library construction. Methods Mol Biol 4:257–283. doi: 10.1385/0-89603-127-6:257 PubMedGoogle Scholar
  42. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5(10):R245–R249. doi: 10.1016/S1074-5521(98)90108-9 CrossRefPubMedGoogle Scholar
  43. Heil JR, Cheng J, Charles TC (2012) Site-specific bacterial chromosome engineering: PhiC31 integrase mediated cassette exchange (IMCE). J Vis Exp (61). doi: 10.3791/3698
  44. Helfrich EJ, Reiter S, Piel J (2014) Recent advances in genome-based polyketide discovery. Curr Opin Biotechnol 29:107–115. doi: 10.1016/j.copbio.2014.03.004 CrossRefPubMedGoogle Scholar
  45. Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Engl 48(26):4688–4716. doi: 10.1002/anie.200806121 CrossRefPubMedGoogle Scholar
  46. Hill AM (2006) The biosynthesis, molecular genetics and enzymology of the polyketide-derived metabolites. Nat Prod Rep 23(2):256–320. doi: 10.1039/b301028g CrossRefPubMedGoogle Scholar
  47. Hopwood DA (1997) Genetic contributions to understanding polyketide synthases. Chem Rev 97(7):2465–2498. doi: 10.1021/cr960034i CrossRefPubMedGoogle Scholar
  48. Howe AC, Jansson JK, Malfatti SA, Tringe SG, Tiedje JM, Brown CT (2014) Tackling soil diversity with the assembly of large, complex metagenomes. Proc Natl Acad Sci U S A 111(13):4904–4909. doi: 10.1073/pnas.1402564111 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Hu H, Zhang Q, Ochi K (2002) Activation of antibiotic biosynthesis by specified mutations in the rpoB gene (encoding the RNA polymerase beta subunit) of Streptomyces lividans. J Bacteriol 184(14):3984–3991. doi: 10.1128/JB.184.14.3984-3991.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Iqbal HA, Craig JW, Brady SF (2014) Antibacterial enzymes from the functional screening of metagenomic libraries hosted in Ralstonia metallidurans. FEMS Microbiol Lett 354(1):19–26. doi: 10.1111/1574-6968.12431 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kakirde KS, Parsley LC, Liles MR (2010) Size does matter: application-driven approaches for soil metagenomics. Soil Biol Biochem 42(11):1911–1923. doi: 10.1016/j.soilbio.2010.07.021 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Khosla C, Herschlag D, Cane DE, Walsh CT (2014) Assembly line polyketide synthases: mechanistic insights and unsolved problems. Biochemistry 53(18):2875–2883. doi: 10.1021/bi500290t CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ladoukakis E, Kolisis FN, Chatziioannou AA (2014) Integrative workflows for metagenomic analysis. Front Cell Dev Biol 2:70. doi: 10.3389/fcell.2014.00070 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lal R, Kumari R, Kaur H, Khanna R, Dhingra N, Tuteja D (2000) Regulation and manipulation of the gene clusters encoding type-I PKSs. Trends Biotechnol 18(6):264–274. doi: 10.1016/S0167-7799(00)01443-8 CrossRefPubMedGoogle Scholar
  55. Lam KN, Charles TC (2015) Strong spurious transcription likely contributes to DNA insert bias in typical metagenomic clone libraries. Microbiome 3:22. doi: 10.1186/s40168-015-0086-5 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Li JW, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325(5937):161–165. doi: 10.1126/science.1168243 CrossRefPubMedGoogle Scholar
  57. Li L, Deng W, Song J, Ding W, Zhao QF, Peng C et al (2008) Characterization of the saframycin A gene cluster from Streptomyces lavendulae NRRL 11002 revealing a nonribosomal peptide synthetase system for assembling the unusual tetrapeptidyl skeleton in an iterative manner. J Bacteriol 190(1):251–263. doi: 10.1128/JB.00826-07 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Liles MR, Manske BF, Bintrim SB, Handelsman J, Goodman RM (2003) A census of rRNA genes and linked genomic sequences within a soil metagenomic library. Appl Environ Microbiol 69(5):2684–2691. doi: 10.1128/Aem.69.5.2684-2691.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP et al (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517(7535):455–459. doi: 10.1038/nature14098 CrossRefPubMedGoogle Scholar
  60. Masschelein J, Mattheus W, Gao LJ, Moons P, Van Houdt R, Uytterhoeven B et al (2013) A PKS/NRPS/FAS hybrid gene cluster from Serratia plymuthica RVH1 encoding the biosynthesis of three broad spectrum, zeamine-related antibiotics. PLoS One 8(1):e54143. doi: 10.1371/journal.pone.0054143 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Metsa-Ketela M, Halo L, Munukka E, Hakala J, Mantsala P, Ylihonko K (2002) Molecular evolution of aromatic polyketides and comparative sequence analysis of polyketide ketosynthase and 16S ribosomal DNA genes from various streptomyces species. Appl Environ Microbiol 68(9):4472–4479. doi: 10.1128/Aem.68.9.4472-4479.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M et al (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9(1):386. doi: 10.1186/1471-2105-9-386 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Milano T, Paiardini A, Grgurina I, Pascarella S (2013) Type I pyridoxal 5′-phosphate dependent enzymatic domains embedded within multimodular nonribosomal peptide synthetase and polyketide synthase assembly lines. BMC Struct Biol 13(1):26. doi: 10.1186/1472-6807-13-26 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Muller CA, Oberauner-Wappis L, Peyman A, Amos GC, Wellington EM, Berg G (2015) Mining for nonribosomal peptide synthetase and polyketide synthase genes revealed a high level of diversity in the Sphagnum bog metagenome. Appl Environ Microbiol 81(15):5064–5072. doi: 10.1128/AEM.00631-15 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335. doi: 10.1021/np200906s CrossRefPubMedPubMedCentralGoogle Scholar
  66. Nichols D, Cahoon N, Trakhtenberg EM, Pham L, Mehta A, Belanger A et al (2010) Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microbiol 76(8):2445–2450. doi: 10.1128/AEM.01754-09 CrossRefPubMedPubMedCentralGoogle Scholar
  67. O’Brien J, Wright GD (2011) An ecological perspective of microbial secondary metabolism. Curr Opin Biotechnol 22(4):552–558. doi: 10.1016/j.copbio.2011.03.010 CrossRefPubMedGoogle Scholar
  68. Parsley LC, Linneman J, Goode AM, Becklund K, George I, Goodman RM et al (2011) Polyketide synthase pathways identified from a metagenomic library are derived from soil Acidobacteria. FEMS Microbiol Ecol 78(1):176–187. doi: 10.1111/j.1574-6941.2011.01122.x CrossRefPubMedGoogle Scholar
  69. Quail MA, Matthews L, Sims S, Lloyd C, Beasley H, Baxter SW (2011) Genomic libraries: I. Construction and screening of fosmid genomic libraries. Methods Mol Biol 772:37–58. doi: 10.1007/978-1-61779-228-1_3 CrossRefPubMedGoogle Scholar
  70. Rausch C, Hoof I, Weber T, Wohlleben W, Huson DH (2007) Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evol Biol 7(1):78. doi: 10.1186/1471-2148-7-78 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF et al (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499(7459):431–437. doi: 10.1038/nature12352 CrossRefPubMedGoogle Scholar
  72. Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR et al (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66(6):2541–2547CrossRefPubMedPubMedCentralGoogle Scholar
  73. Sabree ZL, Bergendahl V, Liles MR, Burgess RR, Goodman RM, Handelsman J (2006) Identification and characterization of the gene encoding the Acidobacterium capsulatum major sigma factor. Gene 376(1):144–151. doi: 10.1016/j.gene.2006.02.033 CrossRefPubMedGoogle Scholar
  74. Schoenborn L, Yates PS, Grinton BE, Hugenholtz P, Janssen PH (2004) Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum-level diversity of soil bacteria. Appl Environ Microbiol 70(7):4363–4366. doi: 10.1128/AEM.70.7.4363-4366.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Shen B (2003) Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr Opin Chem Biol 7(2):285–295. doi: 10.1016/S1367-5931(03)00020-6 CrossRefPubMedGoogle Scholar
  76. Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-Kilobase-pair fragments of human DNA in Escherichia-Coli using an F-factor-based vector. Proc Natl Acad Sci U S A 89(18):8794–8797. doi: 10.1073/pnas.89.18.8794 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Siezen RJ, Khayatt BI (2008) Natural products genomics. Microb Biotechnol 1(4):275–282. doi: 10.1111/j.1751-7915.2008.00044.x CrossRefPubMedPubMedCentralGoogle Scholar
  78. Snyder AB, Worobo RW (2014) Chemical and genetic characterization of bacteriocins: antimicrobial peptides for food safety. J Sci Food Agric 94(1):28–44. doi: 10.1002/jsfa.6293 CrossRefPubMedGoogle Scholar
  79. Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18(4):380–416. doi: 10.1039/a909079g CrossRefPubMedGoogle Scholar
  80. Suenaga H (2012) Targeted metagenomics: a high-resolution metagenomics approach for specific gene clusters in complex microbial communities. Environ Microbiol 14(1):13–22. doi: 10.1111/j.1462-2920.2011.02438.x CrossRefPubMedGoogle Scholar
  81. Summers RG, Donadio S, Staver MJ, Wendt-Pienkowski E, Hutchinson CR, Katz L (1997) Sequencing and mutagenesis of genes from the erythromycin biosynthetic gene cluster of Saccharopolyspora erythraea that are involved in L-mycarose and D-desosamine production. Microbiology 143(10):3251–3262. doi: 10.1099/00221287-143-10-3251 CrossRefPubMedGoogle Scholar
  82. Sundlov JA, Shi C, Wilson DJ, Aldrich CC, Gulick AM (2012) Structural and functional investigation of the intermolecular interaction between NRPS adenylation and carrier protein domains. Chem Biol 19(2):188–198. doi: 10.1016/j.chembiol.2011.11.013 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Treangen TJ, Salzberg SL (2012) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13(1):36–46. doi: 10.1038/nrg3117 Google Scholar
  84. Tulp M, Bohlin L (2005) Rediscovery of known natural compounds: nuisance or goldmine? Bioorg Med Chem 13(17):5274–5282. doi: 10.1016/j.bmc.2005.05.067 CrossRefPubMedGoogle Scholar
  85. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM et al (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428(6978):37–43. doi: 10.1038/nature02340 CrossRefPubMedGoogle Scholar
  86. Uchiyama T, Miyazaki K (2010) Product-induced gene expression, a product-responsive reporter assay used to screen metagenomic libraries for enzyme-encoding genes. Appl Environ Microbiol 76(21):7029–7035. doi: 10.1128/AEM.00464-10 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Uchiyama T, Abe T, Ikemura T, Watanabe K (2005) Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat Biotechnol 23(1):88–93. doi: 10.1038/nbt1048 CrossRefPubMedGoogle Scholar
  88. van Belkum MJ, Martin-Visscher LA, Vederas JC (2011) Structure and genetics of circular bacteriocins. Trends Microbiol 19(8):411–418. doi: 10.1016/j.tim.2011.04.004 CrossRefPubMedGoogle Scholar
  89. Wawrik B, Kerkhof L, Zylstra GJ, Kukor JJ (2005) Identification of unique type II polyketide synthase genes in soil. Appl Environ Microbiol 71(5):2232–2238. doi: 10.1128/AEM.71.5.2232-2238.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R et al (2015) antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43(W1):W237–W243. doi: 10.1093/nar/gkv437 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Wild J, Hradecna Z, Szybalski W (2002) Conditionally amplifiable BACs: switching from single-copy to high-copy vectors and genomic clones. Genome Res 12(9):1434–1444. doi: 10.1101/gr.130502 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Yun J, Ryu S (2005) Screening for novel enzymes from metagenome and SIGEX, as a way to improve it. Microb Cell Fact 4(1):8. doi: 10.1186/1475-2859-4-8 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Zacharof MP, Lovitt RW (2012) Bacteriocins produced by lactic acid bacteria a review article. APCBEE Procedia 2:50–56. doi: 10.1016/j.apcbee.2012.06.010 CrossRefGoogle Scholar
  94. Zerikly M, Challis GL (2009) Strategies for the discovery of new natural products by genome mining. ChemBioChem 10(4):625–633. doi: 10.1002/cbic.200800389 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alinne L. R. Santana-Pereira
    • 1
  • Mark R. Liles
    • 1
    Email author
  1. 1.Department of Biological SciencesAuburn UniversityAuburnUSA

Personalised recommendations