Metagenome Analyses of Multispecies Microbial Biofilms: First Steps Toward Understanding Diverse Microbial Systems on Surfaces

  • Christel Schmeisser
  • Ines Krohn-Molt
  • Wolfgang R. StreitEmail author


Microbial biofilms are the dominant form of life on earth. Most naturally occurring microbial biofilms are phylogenetically diverse containing bacteria, archaea, viruses, phages, and smaller eukaryotes such as fungi, which have learned to live together. There are many examples of beneficial biofilms, such as biofilms in the plant rhizosphere and the phyllosphere and as part of the human microbiome. In industries and hospitals, biofilms are often unwanted because they are associated with pathogenicity or they interfere with production processes. On the other hand, especially in industries, biofilms are also used as production systems. Despite their complexity in nature and makeup, there are some common traits of biofilms: they require a surface, either biotic or abiotic; they produce a polymeric matrix (EPS) consisting of different mixtures of polysaccharides, fatty acids, proteins, and DNA; and they are embedded into this structure. The EPS gives a structure and a house to the many microbes, and it allows the exchange of signaling molecules, nutrients, DNAs, RNAs, and other molecules between the cells. Biofilms are not static but rather dynamic systems that are perhaps early forms of multicellular systems. While previous research has mainly focused on research on mono-species biofilms, it was only in the last few years the first examples of polymicrobial and complex biofilms were characterized in detail, using metagenome- and NGS-based technologies. Thus, within this review, we will highlight what we have learned about life in multispecies and complex biofilms through metagenome technologies during the last decade.


Metagenome analyses Bacterial biofilms 


  1. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43(11):5721–5732. doi: 10.1128/jcm.43.11.5721-5732.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aas JA, Griffen AL, Dardis SR, Lee AM, Olsen I, Dewhirst FE, Leys EJ, Paster BJ (2008) Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol 46:1407–1417. doi: 10.1128/jcm.01410-07 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Battin TJ, Besemer K, Bengtsson MM, Romani AM, Packmann AI (2016) The ecology and biogeochemistry of stream biofilms. Nat Rev Microbiol 14(4):251–263. doi: 10.1038/nrmicro.2016.15 CrossRefPubMedGoogle Scholar
  4. Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simon-Soro A, Pignatelli M, Mira A (2012) The oral metagenome in health and disease. ISME J 6(1):46–56CrossRefPubMedGoogle Scholar
  5. Bogino PC, de las Mercedes Oliva M, Sorroche FG, Giordano W (2013) The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 14(8):15838–15859. doi: 10.3390/ijms140815838 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bottos EM, Vincent WF, Greer CW, Whyte LG (2008) Prokaryotic diversity of arctic ice shelf microbial mats. Environ Microbiol (4):950–966. doi: 10.1111/j1462-2920200701516x. Epub 2008 Jan 22
  7. Brazelton WJ, Baross JA (2009) Abundant transposases encoded by the metagenome of a hydrothermal chimney biofilm. ISME J 3(12):1420–1424CrossRefPubMedGoogle Scholar
  8. Burmolle M, Ren D, Bjarnsholt T, Sorensen SJ (2014) Interactions in multispecies biofilms: do they actually matter? Trends Microbiol 22(2):84–91. doi: 10.1016/jtim201312004 CrossRefPubMedGoogle Scholar
  9. Carpentier B, Cerf O (1993) Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl Bacteriol 75(6):499–511CrossRefPubMedGoogle Scholar
  10. Chao Y, Mao Y, Wang Z, Zhang T (2015) Diversity and functions of bacterial community in drinking water biofilms revealed by high-throughput sequencing. Sci Rep 5:10044. doi: 10.1038/srep10044 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464CrossRefPubMedGoogle Scholar
  12. Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422. doi: 10.1146/annurev.micro.61.080706.093316 CrossRefPubMedGoogle Scholar
  13. Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64(4):847–867CrossRefPubMedPubMedCentralGoogle Scholar
  14. Edlund A, Yang Y, Hall AP, Guo L, Lux R, He X, Nelson KE, Nealson KH, Yooseph S, Shi W, McLean JS (2013) An in vitro biofilm model system maintaining a highly reproducible species and metabolic diversity approaching that of the human oral microbiome. Microbiome 1(1):1–17. doi: 10.1186/2049-2618-1-25 CrossRefGoogle Scholar
  15. Edwards JL, Smith DL, Connolly J, McDonald JE, Cox MJ, Joint I, Edwards C, McCarthy AJ (2010) Identification of carbohydrate metabolism genes in the metagenome of a marine biofilm community shown to be dominated by gammaproteobacteria and bacteroidetes. Genes (Basel) 1(3):371–384. doi: 10.3390/genes1030371 CrossRefGoogle Scholar
  16. Elshahed MS, Senko JM, Najar FZ, Kenton SM, Roe BA, Dewers TA, Spear JR, Krumholz LR (2003) Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Appl Environ Microbiol 2003(9):5609–5621CrossRefGoogle Scholar
  17. Emerson D, Revsbech NP (1994) Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: field studies. Appl Environ Microbiol 60(11):4022–4031PubMedPubMedCentralGoogle Scholar
  18. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633. doi: 10.1038/nrmicro2415. Epub 2010 Aug 2PubMedGoogle Scholar
  19. Frias-Lopez J, Duran-Pinedo A (2012) Effect of periodontal pathogens on the metatranscriptome of a healthy multispecies biofilm model. J Bacteriol 194(8):2082–2095. doi: 10.1128/JB06328-11 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gomez-Alvarez V, Revetta R, Domingo JW (2012) Metagenome analyses of corroded concrete wastewater pipe biofilms reveal a complex microbial system. BMC Microbiol 12(1):122CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hoiby N (2002) Understanding bacterial biofilms in patients with cystic fibrosis: current and innovative approaches to potential therapies. J Cyst Fibros 1(4):249–254CrossRefPubMedGoogle Scholar
  22. Kleinberg I (2002) A mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation: an alternative to streptococcus mutans and the specific-plaque hypothesis. Crit Rev Oral Biol Med 13(2):108–125. doi: 10.1177/154411130201300202 CrossRefPubMedGoogle Scholar
  23. Krohn-Molt I, Wemheuer B, Alawi M, Poehlein A, Gullert S, Schmeisser C, Pommerening-Roser A, Grundhoff A, Daniel R, Hanelt D, Streit WR (2013) Metagenome survey of a multispecies and alga-associated biofilm revealed key elements of bacterial-algal interactions in photobioreactors. Appl Environ Microbiol 79(20):6196–6206. doi: 10.1128/AEM.01641-13 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Leary DH, Li RW, Hamdan LJ, WJt H, Lebedev N, Wang Z, Deschamps JR, Kusterbeck AW, Vora GJ (2014) Integrated metagenomic and metaproteomic analyses of marine biofilm communities. Biofouling 30(10):1211–1223. doi: 10.1080/08927014.2014.977267 CrossRefPubMedGoogle Scholar
  25. Liljeqvist M, Ossandon FJ, Gonzalez C, Rajan S, Stell A, Valdes J, Holmes DS, Dopson M (2015) Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream. FEMS Microbiol Ecol 91(4). doi: 10.1093/femsec/fiv011
  26. Liu B, Faller LL, Klitgord N, Mazumdar V, Ghodsi M, Sommer DD, Gibbons TR, Treangen TJ, Chang YC, Li S, Stine OC, Hasturk H, Kasif S, Segre D, Pop M, Amar S (2012) Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PLoS One 7(6):e37919. doi: 10.1371/journal.pone.0037919 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Marsh P (2006) Dental plaque as a biofilm and a microbial community—implications for health and disease. BMC Oral Health 6(Suppl 1):S14CrossRefPubMedPubMedCentralGoogle Scholar
  28. McLean JS, Lombardo MJ, Badger JH, Edlund A, Novotny M, Yee-Greenbaum J, Vyahhi N, Hall AP, Yang Y, Dupont CL, Ziegler MG, Chitsaz H, Allen AE, Yooseph S, Tesler G, Pevzner PA, Friedman RM, Nealson KH, Venter JC, Lasken RS (2013) Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proc Natl Acad Sci U S A 110(26):E2390–E2399. doi: 10.1073/pnas.1219809110 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mills HJ, Martinez RJ, Story S, Sobecky PA (2004) Identification of members of the metabolically active microbial populations associated with Beggiatoa species mat communities from Gulf of Mexico cold-seep sediments. Appl Environ Microbiol 70(9):5447–5458CrossRefPubMedPubMedCentralGoogle Scholar
  30. Moons P, Michiels CW, Aertsen A (2009) Bacterial interactions in biofilms. Crit Rev Microbiol 35(3):157–168. doi: 10.1080/10408410902809431 CrossRefPubMedGoogle Scholar
  31. Moreno-Paz M, Gomez M, Arcas A, Parro V (2010) Environmental transcriptome analysis reveals physiological differences between biofilm and planktonic modes of life of the iron oxidizing bacteria Leptospirillum spp. in their natural microbial community. BMC Genomics 11(1):404CrossRefPubMedPubMedCentralGoogle Scholar
  32. Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levanos VA, Sahasrabudhe A, Dewhirst FE (2001) Bacterial diversity in human subgingival plaque. J Bacteriol 183(12):3770–3783. doi: 10.1128/JB.183.12.3770-3783.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Peimbert M, Alcaraz LD, Bonilla-Rosso G, Olmedo-Alvarez G, Garcia-Oliva F, Segovia L, Eguiarte LE, Souza V (2011) Comparative metagenomics of two microbial mats at Cuatro Cienegas basin I: ancient lessons on how to cope with an environment under severe nutrient stress. Astrobiology 12(7):648–658. doi: 10.1089/ast20110694 CrossRefGoogle Scholar
  34. Peterson SN, Meissner T, AI S, Snesrud E, Ong AC, Schork NJ, Bretz WA (2014) Functional expression of dental plaque microbiota. Front Cell Infect Microbiol 4:108. doi: 10.3389/fcimb.2014.00108 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pihlstrom BL, Michalowicz BS, Johnson NW (2005) Periodontal diseases. Lancet (London, England) 366(9499):1809–1820. doi: 10.1016/s0140-6736(05)67728-8 CrossRefGoogle Scholar
  36. Ram RJ, Verberkmoes NC, Thelen MP, Tyson GW, Baker BJ, Blake RC 2nd, Shah M, Hettich RL, Banfield JF (2005) Community proteomics of a natural microbial biofilm. Science 308(5730):1915–1920. doi: 10.1126/science.1109070 CrossRefPubMedGoogle Scholar
  37. Sanli K, Bengtsson-Palme J, Nilsson RH, Kristiansson E, Rosenblad MA, Blanck H, Eriksson KM (2015) Metagenomic sequencing of marine Periphyton: taxonomic and functional insights into biofilm communities. Front Microbiol 6:1192. doi: 10.3389/fmicb.2015.01192 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Schmeisser C, Stockigt C, Raasch C, Wingender J, Timmis KN, Wenderoth DF, Flemming HC, Liesegang H, Schmitz RA, Jaeger KE, Streit WR (2003) Metagenome survey of biofilms in drinking-water networks. Appl Environ Microbiol 69(12):7298–7309CrossRefPubMedPubMedCentralGoogle Scholar
  39. Selwitz RH, Ismail AI, Pitts NB (2007) Dental caries. Lancet (London, England) 369(9555):51–59. doi: 10.1016/s0140-6736(07)60031-2 CrossRefGoogle Scholar
  40. Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407(6805):762–764CrossRefPubMedGoogle Scholar
  41. Treude T, Knittel K, Blumenberg M, Seifert R, Boetius A (2005) Subsurface microbial methanotrophic mats in the Black Sea. Appl Environ Microbiol 71(10):6375–6378CrossRefPubMedPubMedCentralGoogle Scholar
  42. Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308(5721):554–557. doi: 10.1126/science.1107851 CrossRefPubMedGoogle Scholar
  43. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428(6978):37–43. doi: 10.1038/nature02340 CrossRefPubMedGoogle Scholar
  44. Van Houdt R, Michiels CW (2010) Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol 109(4):1117–1131. doi: 10.1111/j.1365-2672.2010.04756.x CrossRefPubMedGoogle Scholar
  45. Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J (2012) Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the high Arctic. Appl Environ Microbiol 78(2):549–559. doi: 10.1128/AEM06354-11. Epub 2011 Nov 11CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wang J, Qi J, Zhao H, He S, Zhang Y, Wei S, Zhao F (2013) Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease. Sci Rep 3:1843. doi: 10.1038/srep01843 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ward DM, Ferris MJ, Nold SC, Bateson MM (1998) A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 62(4):1353–1370PubMedPubMedCentralGoogle Scholar
  48. Xie G, Chain PS, Lo CC, Liu KL, Gans J, Merritt J, Qi F (2010) Community and gene composition of a human dental plaque microbiota obtained by metagenomic sequencing. Mol Oral Microbiol 25(6):391–405. doi: 10.1111/j.2041-1014.2010.00587.x CrossRefPubMedPubMedCentralGoogle Scholar
  49. Yost S, Duran-Pinedo AE, Teles R, Krishnan K, Frias-Lopez J (2015) Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis. Genome Med 7(1):27. doi: 10.1186/s13073-015-0153-3 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Zaura E, Keijser BJF, Huse SM, Crielaard W (2009) Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol 9:259–259. doi: 10.1186/1471-2180-9-259 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zhang W, Wang Y, Lee OO, Tian R, Cao H, Gao Z, Li Y, Yu L, Xu Y, Qian P-Y (2013) Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses. Sci Rep 3:3180. doi: 10.1038/srep03180 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christel Schmeisser
    • 1
  • Ines Krohn-Molt
    • 1
  • Wolfgang R. Streit
    • 1
    Email author
  1. 1.Division of Microbiology and Biotechnology, Biocenter Klein FlottbekUniversity of HamburgHamburgGermany

Personalised recommendations