Metagenomic Cosmid Libraries Suitable for Functional Screening in Proteobacteria

  • Jiujun Cheng
  • Kathy N. Lam
  • Katja Engel
  • Michael Hall
  • Josh D. Neufeld
  • Trevor C. CharlesEmail author


Functional metagenomics, based on screening/selection of clones from metagenomic libraries, has the potential to make major contributions to our understanding of gene function and the development of biotechnology solutions. However, there are challenges and limitations that must be overcome if that potential is to be realized. These include cloning bias in library construction, host-dependence of gene expression, and library vector host range restrictions. In this chapter, we discuss some of our efforts to improve the quality and availability of metagenomic libraries through the production of a series of metagenomic cosmid libraries from diverse Canadian soils. Although these libraries are suitable for screening in a range of bacteria, they are currently limited to the Proteobacteria. To better capture genes from throughout the diversity of microbial life, it will be desirable to construct and make available metagenomic libraries that are able to support phenotypic screening in correspondingly suitable taxonomic backgrounds. Ongoing work is directed at achieving this important goal.



We wish to thank Drs. Kenneth J. Reimer, Paul Grogan, Richard A. Frank, Sylvie A. Quideau, Richard S. Winder, Roland I. Hall, Tim R. Moore, Kari E. Dunfield, and Clark Reichert for collecting the soil samples. This work was partially supported by a Strategic Projects grant to TCC and Discovery Grants to JDN and TCC, both from the Natural Sciences and Engineering Research Council of Canada (NSERC).


  1. Aakvik T, Degnes KF, Dahlsrud R et al (2009) A plasmid RK2-based broad-host-range cloning vector useful for transfer of metagenomic libraries to a variety of bacterial species. FEMS Microbiol Lett 296:149–158. doi: 10.1111/j.1574-6968.2009.01639.x CrossRefPubMedGoogle Scholar
  2. Bartram AK, Lynch MDJ, Stearns JC et al (2011) Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Appl Environ Microbiol 77:3846–3852. doi: 10.1128/AEM.02772-10 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi: 10.1038/nmeth.f.303 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cheng J, Romantsov T, Engel K, Doxey AC, Rose DR, Neufeld JD, Charles TC (2017) Functional metagenomics reveals novel ß-galactosidases not predictable from gene sequences. PLOS ONE 12(3):e0172545Google Scholar
  5. Cheng J, Charles TC (2016) Novel polyhydroxyalkanoate copolymers produced in Pseudomonas putida by metagenomic polyhydroxyalkanoate synthases. Appl Microbiol Biotechnol 100(17):7611–7627. doi: 10.1007/s00253-016-7666-6 CrossRefPubMedGoogle Scholar
  6. Cheng J, Pinnell L, Engel K et al (2014) Versatile broad-host-range cosmids for construction of high quality metagenomic libraries. J Microbiol Methods 99:27–34. doi: 10.1016/j.mimet.2014.01.015 CrossRefPubMedGoogle Scholar
  7. Colin P-Y, Kintses B, Gielen F et al (2015) Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat Commun 6:10008. doi: 10.1038/ncomms10008 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Craig JW, Chang F-Y, Kim JH et al (2010) Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse proteobacteria. Appl Environ Microbiol 76:1633–1641. doi: 10.1128/AEM.02169-09 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Danhorn T, Young CR, DeLong EF (2012) Comparison of large-insert, small-insert and pyrosequencing libraries for metagenomic analysis. ISME J 6:2056–2066. doi: 10.1038/ismej.2012.35 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dinsdale EA, Edwards RA, Hall D et al (2008) Functional metagenomic profiling of nine biomes. Nature 452:629–632. doi: 10.1038/nature06810 CrossRefPubMedGoogle Scholar
  11. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. doi: 10.1038/nmeth.2604 CrossRefPubMedGoogle Scholar
  12. Ekkers DM, Cretoiu MS, Kielak AM, Elsas JDV (2012) The great screen anomaly—a new frontier in product discovery through functional metagenomics. Appl Microbiol Biotechnol 93:1005–1020. doi: 10.1007/s00253-011-3804-3 CrossRefPubMedGoogle Scholar
  13. Engel K, Pinnell L, Cheng J et al (2012) Nonlinear electrophoresis for purification of soil DNA for metagenomics. J Microbiol Methods 88:35–40. doi: 10.1016/j.mimet.2011.10.007 CrossRefPubMedGoogle Scholar
  14. Gabor EM, Alkema WBL, Janssen DB (2004) Quantifying the accessibility of the metagenome by random expression cloning techniques. Environ Microbiol 6:879–886. doi: 10.1111/j.1462-2920.2004.00640.x CrossRefPubMedGoogle Scholar
  15. Gaida SM, Sandoval NR, Nicolaou SA et al (2015) Expression of heterologous sigma factors enables functional screening of metagenomic and heterologous genomic libraries. Nat Commun 6:7045. doi: 10.1038/ncomms8045 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ghai R, Martin-Cuadrado A-B, Molto AG et al (2010) Metagenome of the Mediterranean deep chlorophyll maximum studied by direct and fosmid library 454 pyrosequencing. ISME J 4:1154–1166. doi: 10.1038/ismej.2010.44 CrossRefPubMedGoogle Scholar
  17. Gong X, Gruninger RJ, Qi M et al (2012) Cloning and identification of novel hydrolase genes from a dairy cow rumen metagenomic library and characterization of a cellulase gene. BMC Res Notes 5:566. doi: 10.1186/1756-0500-5-566 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hug LA, Baker BJ, Anantharaman K et al (2016) A new view of the tree of life. Nat Microbiol 1:16048. doi: 10.1038/nmicrobiol.2016.48 CrossRefPubMedGoogle Scholar
  19. Iqbal HA, Low-Beinart L, Obiajulu JU, Brady SF (2016) Natural product discovery through improved functional metagenomics in Streptomyces. J Am Chem Soc 138(30):9341–9344. doi: 10.1021/jacs.6b02921 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kaddurah-Daouk R, Baillie RA, Zhu H et al (2011) Enteric microbiome metabolites correlate with response to simvastatin treatment. PLoS One 6:e25482–e25410. doi: 10.1371/journal.pone.0025482 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kakirde KS, Parsley LC, Liles MR (2010) Size does matter: application-driven approaches for soil metagenomics. Soil Biol Biochem 42:1911–1923. doi: 10.1016/j.soilbio.2010.07.021 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kitahara K, Yasutake Y, Miyazaki K (2012) Mutational robustness of 16S ribosomal RNA, shown by experimental horizontal gene transfer in Escherichia coli. Proc Natl Acad Sci U S A 109:19220–19225. doi: 10.1073/pnas.1213609109 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lam KN, Charles TC (2015) Strong spurious transcription likely contributes to DNA insert bias in typical metagenomic clone libraries. Microbiome 3:22. doi: 10.1186/s40168-015-0086-5 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Leis B, Angelov A, Mientus M et al (2015) Identification of novel esterase-active enzymes from hot environments by use of the host bacterium Thermus thermophilus. Front Microbiol 6:275. doi: 10.3389/fmicb.2015.00275 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Li Y, Wexler M, Richardson DJ et al (2005) Screening a wide host-range, waste-water metagenomic library in tryptophan auxotrophs of Rhizobium leguminosarum and of Escherichia coli reveals different classes of cloned trp genes. Environ Microbiol 7:1927–1936. doi: 10.1111/j.1462-2920.2005.00853.x CrossRefPubMedGoogle Scholar
  26. Li M, Wang B, Zhang M et al (2008) Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci U S A 105:2117–2122. doi: 10.1073/pnas.0712038105 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Liebl W, Angelov A, Juergensen J et al (2014) Alternative hosts for functional (meta)genome analysis. Appl Microbiol Biotechnol 98:8099–8109. doi: 10.1007/s00253-014-5961-7 CrossRefPubMedGoogle Scholar
  28. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: PAired-enD Assembler for Illumina sequences. BMC Bioinformatics 13:31Google Scholar
  29. McDonald D, Price MN, Goodrich J et al (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618. doi: 10.1038/ismej.2011.139 CrossRefPubMedGoogle Scholar
  30. Neufeld JD, Vohra J, Dumont MG et al (2007) DNA stable-isotope probing. Nat Protoc 2:860–866. doi: 10.1038/nprot.2007.109 CrossRefPubMedGoogle Scholar
  31. Neufeld JD, Engel K, Cheng J et al (2011) Open resource metagenomics: a model for sharing metagenomic libraries. Stand Genomic Sci 5:203–210. doi: 10.4056/sigs.1974654 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Raes J, Korbel JO, Lercher MJ et al (2007) Prediction of effective genome size in metagenomic samples. Genome Biol 8:R10. doi: 10.1186/gb-2007-8-1-r10 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Roller M, Lucić V, Nagy I et al (2013) Environmental shaping of codon usage and functional adaptation across microbial communities. Nucleic Acids Res 41:8842–8852. doi: 10.1093/nar/gkt673 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Schallmey M, Ly A, Wang C et al (2011) Harvesting of novel polyhydroxyalkanaote (PHA) synthase encoding genes from a soil metagenome library using phenotypic screening. FEMS Microbiol Lett 321:150–156. doi: 10.1111/j.1574-6968.2011.02324.x CrossRefPubMedGoogle Scholar
  35. Schloss PD, Girard RA, Martin T et al (2016) Status of the Archaeal and Bacterial Census: an update. mBio 7:e00201–e00216. doi: 10.1128/mBio.00201-16 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Sommer M, Dantas G, Church GM (2009) Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325:1128–1131. doi: 10.1126/science.1176950 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Tasse L, Bercovici J, Pizzut-Serin S et al (2010) Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Res 20:1605–1612. doi: 10.1101/gr.108332.110 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Taupp M, Mewis K, Hallam SJ (2011) The art and design of functional metagenomic screens. Curr Opin Biotechnol 22:465–472. doi: 10.1016/j.copbio.2011.02.010 CrossRefPubMedGoogle Scholar
  39. Tebbe CC, Vahjen W (1993) Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol 59:2657–2665PubMedPubMedCentralGoogle Scholar
  40. Temperton B, Field D, Oliver A et al (2009) Bias in assessments of marine microbial biodiversity in fosmid libraries as evaluated by pyrosequencing. ISME J 3:792–796. doi: 10.1038/ismej.2009.32 CrossRefPubMedGoogle Scholar
  41. Terrón-González L, Medina C, Limón-Mortés MC, Santero E (2013) Heterologous viral expression systems in fosmid vectors increase the functional analysis potential of metagenomic libraries. Sci Rep 3:1107. doi: 10.1038/srep01107 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Uchiyama T, Miyazaki K (2009) Functional metagenomics for enzyme discovery: challenges to efficient screening. Curr Opin Biotechnol 20:616–622. doi: 10.1016/j.copbio.2009.09.010 CrossRefPubMedGoogle Scholar
  43. Ufarté L, Potocki-Veronese G, Laville É (2015) Discovery of new protein families and functions: new challenges in functional metagenomics for biotechnologies and microbial ecology. Front Microbiol 6:563. doi: 10.3389/fmicb.2015.00563 PubMedPubMedCentralGoogle Scholar
  44. Verastegui Y, Cheng J, Engel K et al (2014) Multisubstrate isotope labeling and metagenomic analysis of active soil bacterial communities. mBio 5:e01157–14. doi: 10.1128/mBio.01157-14 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi: 10.1128/AEM.00062-07 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wang L, Hatem A, Catalyurek UV et al (2013) Metagenomic insights into the carbohydrate-active enzymes carried by the microorganisms adhering to solid digesta in the rumen of cows. PLoS One 8:e78507. doi: 10.1371/journal.pone.0078507 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wickham H (2016) ggplot2: Elegant graphics for data analysis. Springer-Verlag, New YorkGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jiujun Cheng
    • 1
  • Kathy N. Lam
    • 1
  • Katja Engel
    • 1
  • Michael Hall
    • 1
  • Josh D. Neufeld
    • 1
  • Trevor C. Charles
    • 1
    Email author
  1. 1.Department of BiologyUniversity of WaterlooWaterlooCanada

Personalised recommendations