The Mathematical Theories of Diffusion: Nonlinear and Fractional Diffusion

Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2186)

Abstract

We describe the mathematical theory of diffusion and heat transport with a view to including some of the main directions of recent research. The linear heat equation is the basic mathematical model that has been thoroughly studied in the last two centuries. It was followed by the theory of parabolic equations of different types. In a parallel development, the theory of stochastic partial differential equations gives a foundation to the probabilistic study of diffusion.

Nonlinear diffusion equations have played an important role not only in theory but also in physics and engineering, and we focus on a relevant aspect, the existence and propagation of free boundaries. Due to our research, we use the porous medium and fast diffusion equations as case examples.

A large part of the paper is devoted to diffusion driven by fractional Laplacian operators and other nonlocal integro-differential operators representing nonlocal, long-range diffusion effects. Three main models are examined (one linear, two nonlinear), and we report on recent progress in which the author is involved.

Notes

Acknowledgements

This work was partially supported by Spanish Project MTM2014-52240-P. The text is based on series of lectures given at the CIME Summer School held in Cetraro, Italy, in July 2016. The author is grateful to the CIME foundation for the excellent organization. The author is also very grateful to his collaborators mentioned in the text for an effort of many years. Special thanks are due to F. del Teso, N. Simonov and D. Stan for a careful reading and comments on the text.

References

  1. 1.
    N. Alibaud, S. Cifani, E. Jakobsen, Continuous dependence estimates for nonlinear fractional convection-diffusion equations. SIAM J. Math. Anal. 44, 603–632 (2012)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    M. Allen, L. Caffarelli, A. Vasseur, Porous medium flow with both a fractional potential pressure and fractional time derivative. Chin. Ann. Math. Ser. B 38(1), 45–82 (2017)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    A. Alphonse, C.M. Elliott, Well-posedness of a fractional porous medium equation on an evolving surface. Nonlinear Anal. 137, 3–42 (2016)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    L. Ambrosio, S. Serfaty, A gradient flow approach to an evolution problem arising in superconductivity. Commun. Pure Appl. Math. 61(11), 1495–1539 (2008)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    L. Ambrosio, N. Gigli, G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edn. (Birkhäuser, Basel, 2008)MATHGoogle Scholar
  6. 6.
    L. Ambrosio, E. Mainini, S. Serfaty, Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices. Ann. IHP, Analyse Non linéaire 28(2), 217–246 (2011)Google Scholar
  7. 7.
    F. Andreu, J.M. Mazón, J. Rossi, J. Toledo, Nonlocal Diffusion Problems. Mathematical Surveys and Monographs, vol. 165 (American Mathematical Society, Providence, RI, 2010)Google Scholar
  8. 8.
    F. Andreu-Vaillo, V. Caselles, J. Mazón, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals. Progress in Mathematics, vol. 223 (Birkhäuser Verlag, Basel, 2004)Google Scholar
  9. 9.
    S.B. Angenent, D.G. Aronson, The focusing problem for the radially symmetric porous medium equation. Commun. Partial Differ. Equ. 20, 1217–1240 (1995)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 116 (Cambridge University Press, Cambridge, 2009)Google Scholar
  11. 11.
    A. Arnold, P. Markowich, G. Toscani, A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Commun. Partial Differ. Equ. 26(1–2), 43–100 (2001)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    D.G. Aronson, The porous medium equation, in Nonlinear Diffusion Problems (Montecatini Terme, 1985). Lecture Notes in Mathematics, vol. 1224 (Springer, Berlin, 1986), pp. 1–46Google Scholar
  13. 13.
    D.G. Aronson, P. Bénilan, Régularité des solutions de l’équation des milieux poreux dans R n. C. R. Acad. Sci. Paris Ser. A-B 288, 103–105 (1979)MathSciNetMATHGoogle Scholar
  14. 14.
    D.G. Aronson, J.A. Graveleau, Self-similar solution to the focusing problem for the porous medium equation. Eur. J. Appl. Math. 4(1), 65–81 (1993)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    D.G. Aronson, J. Serrin, Local behavior of solutions of quasilinear parabolic equations. Arch. Ration. Mech. Anal. 25, 81–122 (1967)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    D.G. Aronson, J.L. Vázquez, Anomalous exponents in nonlinear diffusion. J. Nonlinear Sci. 5(1), 29–56 (1995)MathSciNetMATHGoogle Scholar
  17. 17.
    D.G. Aronson, H.F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations and Related Topics. Lecture Notes in Mathematics, vol. 446 (Springer, Berlin, 1975), pp. 5–49Google Scholar
  18. 18.
    D.G. Aronson, H.F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30(1), 33–76 (1978)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    D.G. Aronson, L.A. Caffarelli, J.L. Vazquez, Interfaces with a corner point in one-dimensional porous medium flow. Commun. Pure Appl. Math. 38(4), 375–404 (1985)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    D.G. Aronson, O. Gil, J.L. Vázquez, Limit behaviour of focusing solutions to nonlinear diffusions. Commun. Partial Differ. Equ. 23(1–2), 307–332 (1998)MathSciNetMATHGoogle Scholar
  21. 21.
    I. Athanasopoulos, L.A. Caffarelli, Continuity of the temperature in boundary heat control problem. Adv. Math. 224(1), 293–315 (2010)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    A. Audrito, J.L. Vázquez, The Fisher-KPP problem with doubly nonlinear diffusion. arxiv:1601.05718v2 [math.AP]Google Scholar
  23. 23.
    G.I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics (Cambridge University Press, Cambridge, 1996). Updated version of Similarity, Self-Similarity, and Intermediate Asymptotics (Consultants Bureau, New York, 1979)Google Scholar
  24. 24.
    B. Barrios, I. Peral, F. Soria, E. Valdinoci, A Widder’s type theorem for the heat equation with nonlocal diffusion. Arch. Ration. Mech. Anal. 213(2), 629–650 (2014)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    R.F. Bass, Diffusions and Elliptic Operators. Probability and Its Applications (Springer, New York, 1998)Google Scholar
  26. 26.
    P. Bénilan, H. Brezis, M.G. Crandall, A semilinear equation in L 1(R N). Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2, 523–555 (1975)Google Scholar
  27. 27.
    J.G. Berryman, C.J. Holland, Nonlinear diffusion problem arising in plasma physics. Phys. Rev. Lett. 40, 1720–1722 (1978)MathSciNetCrossRefGoogle Scholar
  28. 28.
    J. Bertoin, Lévy Processes. Cambridge Tracts in Mathematics, vol. 121 (Cambridge University Press, Cambridge, 1996)Google Scholar
  29. 29.
    A. Bertozzi, T. Laurent, F. Léger, Aggregation via Newtonian potential and aggregation patches. M3AS 22(suppl. 1), 1140005, 39 pp. (2012)Google Scholar
  30. 30.
    P. Biler, G. Wu, Two-dimensional chemotaxis models with fractional diffusion. Math. Methods Appl. Sci. 32(1), 112–126 (2009)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    P. Biler, G. Karch, R. Monneau, Nonlinear diffusion of dislocation density and self-similar solutions. Commun. Math. Phys. 294(1), 145–168 (2010)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    P. Biler, C. Imbert, G. Karch, Barenblatt profiles for a nonlocal porous medium equation. C.R. Math. 349(11), 641–645 (2011)Google Scholar
  33. 33.
    P. Biler, C. Imbert, G. Karch, Nonlocal porous medium equation: Barenblatt profiles and other weak solutions. Arch. Ration. Mech. Anal. 215(2), 497–529 (2015)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    C. Bjorland, L. Caffarelli, A. Figalli, Non-local gradient dependent operators. Adv. Math. 230(4–6), 1859–1894 (2012)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo, J.L. Vázquez, Asymptotics of the fast diffusion equation via entropy estimates. Arch. Rat. Mech. Anal. 191, 347–385 (2009)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    R.M. Blumenthal, R.K. Getoor, Some theorems on stable processes. Trans. Am. Math. Soc. 95(2), 263–273 (1960)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    K. Bogdan, K. Burdzy, Z.-Q. Chen, Censored stable processes. Probab. Theory Relat. Fields 127, 89–152 (2003)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    M. Bonforte, A. Figalli, Total variation flow and sign fast diffusion in one dimension. J. Differ. Equ. 252(8), 4455–4480 (2012)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    M. Bonforte, G. Grillo, Asymptotics of the porous media equation via Sobolev inequalities. J. Funct. Anal. 225(1), 33–62 (2005)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    M. Bonforte, J.L. Vázquez, Global positivity estimates and Harnack inequalities for the fast diffusion equation. J. Funct. Anal. 240(2), 399–428 (2006)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    M. Bonforte, J.L. Vázquez, Positivity, local smoothing, and Harnack inequalities for very fast diffusion equations. Adv. Math. 223(2), 529–578 (2010)MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    M. Bonforte, J.L. Vázquez, Quantitative local and global a priori estimates for fractional nonlinear diffusion equations. Adv. Math. 250, 242–284 (2014). arXiv:1210.2594Google Scholar
  43. 43.
    M. Bonforte, J.L. Vázquez, A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains. Arch. Ration. Mech. Anal. 218(1), 317–362 (2015)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    M. Bonforte, J.L. Vázquez, A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains. Part I. Existence, uniqueness and upper bounds. Nonlinear Anal. 131, 363–398 (2016)Google Scholar
  45. 45.
    M. Bonforte, J. Dolbeault, G. Grillo, J.L. Vázquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities. Proc. Natl. Acad. Sci. USA 107(38), 16459–16464 (2010)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    M. Bonforte, G. Grillo, J.L. Vázquez, Special fast diffusion with slow asymptotics: entropy method and flow on a Riemann manifold. Arch. Ration. Mech. Anal. 196(2), 631–680 (2010)MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    M. Bonforte, Y. Sire, J.L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete Contin. Dyn. Syst. A 35(12), 5725–5767 (2015)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    M. Bonforte, A. Segatti, J.L. Vázquez, Non-existence and instantaneous extinction of solutions for singular nonlinear fractional diffusion equations. Calc. Var. Partial Differ. Equ. 55(3), 23 pp. (2016) Art. 68Google Scholar
  49. 49.
    M. Bonforte, A. Figalli, X. Ros-Otón, Infinite speed of propagation and regularity of solutions to the fractional porous medium equation in general domains. Commun. Pure Appl. Math. 70(8), 1472–1508 (2017)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    M. Bonforte, A. Figalli, J.L. Vázquez, Sharp global estimates for local and nonlocal porous medium-type equations in bounded domains. arXiv:1610.09881Google Scholar
  51. 51.
    M. Bonforte, Y. Sire, J.L. Vázquez, Optimal existence and uniqueness theory for the fractional heat equation. Nonlinear Anal. 153, 142–168 (2017)MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    N. Bournaveas, V. Calvez, The one-dimensional Keller-Segel model with fractional diffusion of cells. Nonlinearity 23(4), 923–935 (2010)MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    J. Boussinesq, Recherches théoriques sur l’écoulement des nappes d’eau infiltrées dans le sol et sur le débit des sources. Comp. Rend. Acad. Sci. J. Math. Pure. Appl. 10, 5–78 (1903/1904)MATHGoogle Scholar
  54. 54.
    C. Brändle, A. de Pablo, Nonlocal heat equations: decay estimates and Nash inequalities. arXiv:1312.4661Google Scholar
  55. 55.
    C. Brändle, J.L. Vázquez, Viscosity solutions for quasilinear degenerate parabolic equations of porous medium type. Indiana Univ. Math. J. 54(3), 817–860 (2005)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    C. Brändle, E. Colorado, A. de Pablo, U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 143(1), 39–71 (2013)MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    R. Brown, A brief account of microscopical observations …. Philos. Mag. 4, 161–173 (1828)Google Scholar
  58. 58.
    C. Bucur, E. Valdinoci, Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana, vol. 20 (Springer; Unione Matematica Italiana, Bologna, 2016)Google Scholar
  59. 59.
    X. Cabré, L. Caffarelli, Fully Nonlinear Elliptic Equations (American Mathematical Society, Providence, RI, 1995)MATHGoogle Scholar
  60. 60.
    X. Cabré, J.M. Roquejoffre, Propagation de fronts dans les équations de Fisher-KPP avec diffusion fractionnaire. C. R. Math. Acad. Sci. Paris 347(23–24), 1361–1366 (2009)MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    X. Cabré, J.M. Roquejoffre, The influence of fractional diffusion in Fisher-KPP equations. Commun. Math. Phys. 320(3), 679–722 (2013)MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    X. Cabré, J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224(5), 2052–2093 (2010)MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    L.A. Caffarelli, The obstacle problem, Lezioni Fermiane. [Fermi Lectures] Acc. Nazionale dei Lincei; Scuola Normale Superiore, Pisa (1998)Google Scholar
  64. 64.
    L.A. Caffarelli, Non-local diffusions, drifts and games, in Nonlinear Partial Differential Equations. Abel Symposium, vol. 7 (Springer, Heidelberg, 2012), pp. 37–52Google Scholar
  65. 65.
    L.A. Caffarelli, A. Friedman, Continuity of the density of a gas flow in a porous medium. Trans. Am. Math. Soc. 252, 99–113 (1979)MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    L.A. Caffarelli, S. Salsa, A Geometric Approach to Free Boundary Problems (American Mathematical Society, Providence, RI, 2005)MATHCrossRefGoogle Scholar
  67. 67.
    L.A. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    L.A. Caffarelli, A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171, 1903–1930 (2010)MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    L. Caffarelli, J.L. Vázquez, Viscosity solutions for the porous medium equation, in Differential Equations: La Pietra 1996 (Florence). Proceedings of Symposia in Pure Mathematics, vol. 65 (American Mathematical Society, Providence, 1999), p. 1326Google Scholar
  70. 70.
    L.A. Caffarelli, J.L. Vázquez, Nonlinear porous medium flow with fractional potential pressure. Arch. Ration. Mech. Anal. 202, 537–565 (2011)MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    L.A. Caffarelli, J.L. Vázquez, Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete Contin. Dyn. Syst. A 29(4), 1393–1404 (2011)MathSciNetMATHGoogle Scholar
  72. 72.
    L.A. Caffarelli, N.I. Wolanski, C 1,α regularity of the free boundary for the N-dimensional porous media equation. Commun. Pure Appl. Math. 43, 885–902 (1990)MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    L.A. Caffarelli, J.L. Vázquez, N.I. Wolanski, Lipschitz continuity of solutions and interfaces of the N-dimensional porous medium equation, Indiana Univ. Math. J. 36, 373–401 (1987)MathSciNetMATHCrossRefGoogle Scholar
  74. 74.
    L. Caffarelli, C.H. Chan, A. Vasseur, Regularity theory for parabolic nonlinear integral operators. J. Am. Math. Soc. 24(3), 849–869 (2011)MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    L.A. Caffarelli, F. Soria, J.L. Vázquez, Regularity of solutions of the fractional porous medium flow. J. Eur. Math. Soc. 15(5), 1701–1746 (2013). arXiv 1201.6048v1 (2012)Google Scholar
  76. 76.
    V. Calvez, J. A. Carrillo, F. Hoffmann, The geometry of diffusing and self-attracting particles in a one-dimensional fair-competition regime, Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions (Springer, Berlin, 2017)Google Scholar
  77. 77.
    M. Caputo, Linear model of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13(5), 529–539 (1967)CrossRefGoogle Scholar
  78. 78.
    J.A. Carrillo, G. Toscani, Asymptotic L 1-decay of solutions of the porous medium equation to self-similarity. Indiana Univ. Math. J. 49, 113–141 (2000)MathSciNetMATHCrossRefGoogle Scholar
  79. 79.
    J.A. Carrillo, A. Jüngel, P.A. Markowich, G. Toscani, A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatsh. Math. 133(1), 1–82 (2001)MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    J.A. Carrillo, Y. Huang, M.C. Santos, J.L. Vázquez, Exponential convergence towards stationary states for the 1D porous medium equation with fractional pressure J. Differ. Equ. 258(3), 736–763 (2015)MathSciNetMATHCrossRefGoogle Scholar
  81. 81.
    A. Castro, D. Córdoba, Global existence, singularities and ill-posedness for a nonlocal flux, Adv. Math. 219 (6), 1916–1936 (2008)MathSciNetMATHCrossRefGoogle Scholar
  82. 82.
    A. Castro, D. Córdoba, F. Gancedo, R. Orive, Incompressible flow in porous media with fractional diffusion. Nonlinearity 22 (8), 1791–1815 (2009)MathSciNetMATHCrossRefGoogle Scholar
  83. 83.
    A. Chang, M.D.M. González, Fractional Laplacian in conformal geometry. Adv. Math. 226(2), 1410–1432 (2011)MathSciNetMATHCrossRefGoogle Scholar
  84. 84.
    H. Chang-Lara, G. Dávila, Regularity for solutions of nonlocal parabolic equations II. J. Differ. Equ. 256(1), 130–156 (2014)MathSciNetMATHCrossRefGoogle Scholar
  85. 85.
    E. Chasseigne, J.L. Vázquez, Theory of extended solutions for fast-diffusion equations in optimal classes of data. Radiation from singularities. Arch. Ration. Mech. Anal. 164(2), 133–187 (2002)MATHCrossRefGoogle Scholar
  86. 86.
    Z.Q. Chen, R. Song, Two-sided eigenvalue estimates for subordinate processes in domains, J. Funct. Anal. 226 (1), 90–113 (2005)MathSciNetMATHCrossRefGoogle Scholar
  87. 87.
    Z.Q. Chen, P. Kim, R. Song, Heat kernel estimates for the Dirichlet fractional Laplacian. J. Eur. Math. Soc. 12(5), 1307–1329 (2010)MathSciNetMATHCrossRefGoogle Scholar
  88. 88.
    Z.Q. Chen, P. Kim, R. Song, Two-sided heat kernel estimates for censored stable-like processes. Probab. Theory Relat. Fields 146(3–4), 361–399 (2010)MathSciNetMATHCrossRefGoogle Scholar
  89. 89.
    B. Chow, P. Lu, L. Ni, Hamilton’s Ricci Flow. Graduate Studies in Mathematics, vol. 77 (American Mathematical Society, Providence, RI; Science Press Beijing, New York, 2006)Google Scholar
  90. 90.
    S. Cifani, E.R. Jakobsen, Entropy solution theory for fractional degenerate convection-diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(3), 413–441 (2011)MathSciNetMATHCrossRefGoogle Scholar
  91. 91.
    R. Cont, P. Tankov, Financial Modelling with Jump Processes (Chapman & Hall/CRC, Boca Raton, 2004)Google Scholar
  92. 92.
    M. Cozzi, A. Figalli, Regularity theory for local and nonlocal minimal surfaces: an overview, in Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions (Springer, Berlin, 2017)Google Scholar
  93. 93.
    M.G. Crandall, T.M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces. Am. J. Math. 93, 265–298 (1971)MathSciNetMATHCrossRefGoogle Scholar
  94. 94.
    M.G. Crandall, L.C. Evans, P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 282(2), 487–502 (1984)MathSciNetMATHCrossRefGoogle Scholar
  95. 95.
    J. Crank, The Mathematics of Diffusion, 2nd edn. (Clarendon Press, Oxford, 1975)MATHGoogle Scholar
  96. 96.
    J. Crank, Free and Moving Boundary Problems (The Clarendon Press, Oxford University Press, New York, 1987)MATHGoogle Scholar
  97. 97.
    N. Cusimano, F. Del Teso, L. Gerardo-Giorda, G. Pagnini, Discretizations of the spectral fractional Laplacian on general domains with Dirichlet, Neumann, and Robin boundary conditions. Preprint (2017)Google Scholar
  98. 98.
    H. Darcy, Les Fontaines Publiques de la ville de Dijon (V. Dalmont, Paris, 1856), pp. 305–401Google Scholar
  99. 99.
    P. Daskalopoulos, C. Kenig, Degenerate Diffusions. Initial Value Problems and Local Regularity Theory. EMS Tracts in Mathematics, vol. 1 (European Mathematical Society (EMS), Zürich, 2007)Google Scholar
  100. 100.
    P. Daskalopoulos, Y. Sire, J.L. Vázquez, Weak and smooth solutions for a fractional Yamabe flow: the case of general compact and locally conformally flat manifolds. Communications in Partial Differential Equations (to appear)Google Scholar
  101. 101.
    E.B. Davies, Heat kernel bounds for second order elliptic operators on Riemannian manifolds. Am. J. Math. 109(3), 545–569 (1987)MathSciNetMATHCrossRefGoogle Scholar
  102. 102.
    E.B. Davies, Heat Kernels and Spectral Theory Cambridge Tracts in Mathematics, vol. 92 (Cambridge University Press, Cambridge, 1990)Google Scholar
  103. 103.
    E. De Giorgi, Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. (Italian) Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3, 25–43 (1957)Google Scholar
  104. 104.
    A. de Pablo, A. Sánchez, Travelling wave behaviour for a porous-Fisher equation. Eur. J. Appl. Math. 9(3), 285–304 (1998)MathSciNetMATHCrossRefGoogle Scholar
  105. 105.
    A. de Pablo, J.L. Vázquez, Travelling waves and finite propagation in a reaction-diffusion equation. J. Differ. Equ. 93(1), 19–61 (1991)MathSciNetMATHCrossRefGoogle Scholar
  106. 106.
    A. De Pablo, F. Quirós, A. Rodríguez, J.L. Vázquez, A fractional porous medium equation. Adv. Math. 226(2), 1378–1409 (2011)MathSciNetMATHCrossRefGoogle Scholar
  107. 107.
    A. De Pablo, F. Quirós, A. Rodríguez, J.L. Vázquez, A general fractional porous medium equation. Commun. Pure Appl. Math. 65(9), 1242–1284 (2012)MathSciNetMATHCrossRefGoogle Scholar
  108. 108.
    A. de Pablo, F. Quirós, A. Rodríguez, J.L. Vázquez, Classical solutions for a logarithmic fractional diffusion equation. J. Math. Pures Appl. (9) 101(6), 901–924 (2014)Google Scholar
  109. 109.
    A. De Pablo, F. Quirós, A. Rodríguez, Nonlocal filtration equations with rough kernels. Nonlinear Anal. TMA 137, 402–425 (2016)MathSciNetMATHCrossRefGoogle Scholar
  110. 110.
    M. del Pino, Bubbling blow-up in critical parabolic problems, in Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions (Springer, Berlin, 2017)Google Scholar
  111. 111.
    F. del Teso, Finite difference method for a fractional porous medium equation. Calcolo 51(4), 615–638 (2014)MathSciNetMATHCrossRefGoogle Scholar
  112. 112.
    F. del Teso, J. Endal, E.R. Jakobsen, Uniqueness and properties of distributional solutions of nonlocal equations of porous medium type. Adv. Math. 305, 78–143 (2017)MathSciNetMATHCrossRefGoogle Scholar
  113. 113.
    J.I. Díaz, Nonlinear partial differential equations and free boundaries. Vol. I. Elliptic equations. Research Notes in Mathematics, vol. 106 (Pitman Advanced Publishing Program, Boston, MA, 1985)Google Scholar
  114. 114.
    E. diBenedetto, Degenerate Parabolic Equations. Series Universitext (Springer, New York, 1993)Google Scholar
  115. 115.
    E. DiBenedetto, U. Gianazza, V. Vespri, Harnack’s Inequality for Degenerate and Singular Parabolic Equations. Springer Monographs in Mathematics (Springer, New York, 2012)Google Scholar
  116. 116.
    E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Preprint (2011)Google Scholar
  117. 117.
    S. Dipierro, E. Valdinoci, A simple mathematical model inspired by the Purkinje cells: from delayed travelling waves to fractional diffusion. arXiv:1702.05553Google Scholar
  118. 118.
    C.M. Elliott, V. Janovský, An error estimate for a finite-element approximation of an elliptic variational inequality formulation of a Hele-Shaw moving-boundary problem. IMA J. Numer. Anal. 3(1), 1–9 (1983)MathSciNetMATHCrossRefGoogle Scholar
  119. 119.
    C. Escudero, The fractional Keller-Segel model. Nonlinearity 19 (12), 2909–2918 (2006)MathSciNetMATHCrossRefGoogle Scholar
  120. 120.
    L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, vol. 19 (American Mathematical Society, Providence, RI, 1998)Google Scholar
  121. 121.
    L.C. Evans, The 1-Laplacian, the -Laplacian and differential games. Perspectives in nonlinear partial differential equations. Contemporary Mathematics, vol. 446, (American Mathematical Society, Providence, RI, 2007), pp. 245–254Google Scholar
  122. 122.
    L.C. Evans, An introduction to Stochastic Differential Equations (American Mathematical Society, Providence, RI, 2013)MATHCrossRefGoogle Scholar
  123. 123.
    E.B. Fabes, C.E. Kenig, R.P. Serapioni, The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equ. 7(1), 77–116 (1982)MathSciNetMATHCrossRefGoogle Scholar
  124. 124.
    P. Fabrie, Solutions fortes et comportement asymptotique pour un modèle de convection naturelle en milieu poreux (French) Acta Appl. Math. 7, 49–77 (1986)MATHGoogle Scholar
  125. 125.
    M. Felsinger, M. Kassmann, Local regularity for parabolic nonlocal operators. Commun. Partial Differ. Equ. 38(9), 1539–1573 (2013)MathSciNetMATHCrossRefGoogle Scholar
  126. 126.
    A. Fick, Ueber diffusion (in German) [On Diffusion]. Ann. Phys. 94, 59–86 (1855)CrossRefGoogle Scholar
  127. 127.
    R.A. Fisher, The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937)MATHCrossRefGoogle Scholar
  128. 128.
    J. Fourier, Théorie analytique de la Chaleur; reprint of the 1822 original: Éditions Jacques Gabay, Paris, 1988. English version: The Analytical Theory of Heat (Dover, New York, 1955)Google Scholar
  129. 129.
    A. Friedman, Partial Differential Equations of Parabolic Type (Prentice-Hall, Englewood Cliffs, NJ, 1964)MATHGoogle Scholar
  130. 130.
    A. Friedman, Stochastic Differential Equations and Applications, vols. 1–2 (Academic, New York, 1976)MATHGoogle Scholar
  131. 131.
    A. Friedman, Variational Principles and Free Boundaries (Wiley, New York, 1982)MATHGoogle Scholar
  132. 132.
    A. Friedman, S. Kamin, The asymptotic behavior of gas in an N-dimensional porous medium. Trans. Am. Math. Soc. 262, 551–563 (1980)MathSciNetMATHGoogle Scholar
  133. 133.
    H. Fujita, On the blowing up of solutions of the Cauchy problem for \(u_{t} = \Delta u + u^{1+\alpha }\). J. Fac. Sci. Tokyo Sect. IA Math. 13, 109–124 (1966)MATHGoogle Scholar
  134. 134.
    V.A. Galaktionov, J.L. Vázquez, Continuation of blowup solutions of nonlinear heat equations in several space dimensions. Commun. Pure Appl. Math. 50(1), 1–67 (1997)MathSciNetMATHCrossRefGoogle Scholar
  135. 135.
    V.A. Galaktionov, J.L. Vázquez, The problem of blow-up in nonlinear parabolic equations. Current developments in partial differential equations (Temuco, 1999). Discrete Contin. Dyn. Syst. 8(2), 399–433 (2002)Google Scholar
  136. 136.
    G. Giacomin, J.L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits. J. Stat. Phys. 87 (1–2), 37–61 (1997)MathSciNetMATHCrossRefGoogle Scholar
  137. 137.
    G. Giacomin, J.L. Lebowitz, R. Marra, Macroscopic evolution of particle systems with short and long-range interactions. Nonlinearity 13(6), 2143–2162 (2000)MathSciNetMATHCrossRefGoogle Scholar
  138. 138.
    I.I. Gihman, A.V. Skorohod, The Theory of Stochastic Processes. III. Grundlehren der Mathematischen Wissenschaften, vol. 232 (Springer, Berlin, 1979) [Russian Edition 1975]Google Scholar
  139. 139.
    D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, Berlin, 1988)MATHGoogle Scholar
  140. 140.
    G. Gilboa, S. Osher, Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)MathSciNetMATHCrossRefGoogle Scholar
  141. 141.
    M.D.M. González, Recent progress on the fractional Laplacian in conformal geometry. arxiv:1609.08988v1Google Scholar
  142. 142.
    M.D.M. González, J. Qing, Fractional conformal Laplacians and fractional Yamabe problems. Anal. Partial Differ. Equ. 6(7), 1535–1576 (2013)MathSciNetMATHGoogle Scholar
  143. 143.
    A.A. Grigor’yan, On the fundamental solution of the heat equation on an arbitrary Riemannian manifold. (Russian) Mat. Zametki 41 (5), 687–692, 765 (1987). English translation: Math. Notes 41(5–6), 386–389 (1987)Google Scholar
  144. 144.
    A.A. Grigor’yan, Heat kernels on weighted manifolds and applications. Contemp. Math. 398, 93–191 (2006)MathSciNetMATHCrossRefGoogle Scholar
  145. 145.
    G. Grillo, M. Muratori, Radial fast diffusion on the hyperbolic space. Proc. Lond. Math. Soc. (3) 109(2), 283–317 (2014)Google Scholar
  146. 146.
    G. Grillo, M. Muratori, M.M. Porzio, Porous media equations with two weights: smoothing and decay properties of energy solutions via Poincaré inequalities. Discrete Contin. Dyn. Syst. 33(8), 3599–3640 (2013)MathSciNetMATHCrossRefGoogle Scholar
  147. 147.
    G. Grillo, M. Muratori, F. Punzo, Fractional porous media equations: existence and uniqueness of weak solutions with measure data. Calc. Var. Partial Differ. Equ. 54(3), 3303–3335 (2015)MathSciNetMATHCrossRefGoogle Scholar
  148. 148.
    G. Grillo, M. Muratori, J.L. Vázquez, The porous medium equation on Riemannian manifolds with negative curvature. The large-time behaviour. arXiv:1604.06126 [math.AP]Google Scholar
  149. 149.
    Q.Y. Guan, Z.M. Ma, Reflected symmetric α-stable processes and regional fractional Laplacian. Probab. Theory Relat. Fields 134, 649–694 (2006)MathSciNetMATHCrossRefGoogle Scholar
  150. 150.
    M.E. Gurtin, R.C. MacCamy, On the diffusion of biological populations. Math. Biosci. 33(1–2), 35–49 (1977)MathSciNetMATHCrossRefGoogle Scholar
  151. 151.
    R.S. Hamilton, The Ricci flow on surfaces. Contemp. Math. 71, 237–262 (1988)MathSciNetCrossRefGoogle Scholar
  152. 152.
    A.K. Head, Dislocation group dynamics II. Similarity solutions of the continuum approximation. Philos. Mag. 26, 65–72 (1972)Google Scholar
  153. 153.
    H.S. Hele-Shaw, The flow of water. Nature 58, 34–36 (1898)CrossRefGoogle Scholar
  154. 154.
    M.A. Herrero, J.J.L. Velázquez, A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super. Pisa. Cl. Sci. IV 24(4), 633–683 (1997)MathSciNetMATHGoogle Scholar
  155. 155.
    S.D. Howison, Complex variable methods in Hele-Shaw moving boundary problems. Eur. J. Appl. Math. 3, 209–224 (1992)MathSciNetMATHCrossRefGoogle Scholar
  156. 156.
    Y.H. Huang, Explicit Barenblatt profiles for fractional porous medium equations. Bull. Lond. Math. Soc. 4(46), 857–869 (2014)MathSciNetMATHCrossRefGoogle Scholar
  157. 157.
    R. Hynd, E. Lindgren, Hölder estimates and large time behavior for a nonlocal doubly nonlinear evolution. Anal. Partial Differ. Equ. 9(6), 1447–1482 (2016)MATHGoogle Scholar
  158. 158.
    R.G. Iagar, A. Sánchez, J.L. Vázquez, Radial equivalence for the two basic nonlinear degenerate diffusion equations. J. Math. Pures Appl. (9) 89(1), 1–24 (2008)Google Scholar
  159. 159.
    M. Jara, Hydrodynamic limit of particle systems with long jumps. http://arxiv.org/abs/0805.1326v2
  160. 160.
    M.D. Jara, T. Komorowski, S. Olla, Limit theorems for additive functionals of a Markov chain. Ann. Appl. Probab. 19(6), 2270–2300 (2009)MathSciNetMATHCrossRefGoogle Scholar
  161. 161.
    M. Jara, C. Landim, S. Sethuraman, Nonequilibrium fluctuations for a tagged particle in mean-zero one-dimensional zero-range processes. Probab. Theory Relat. Fields 145, 565–590 (2009)MathSciNetMATHCrossRefGoogle Scholar
  162. 162.
    T.L. Jin, J.G. Xiong, A fractional Yamabe ow and some applications. J. Reine Angew. Math. 696, 187–223 (2014)MathSciNetMATHGoogle Scholar
  163. 163.
    A. Jüngel, Cross diffusions, Chap. 4 in Entropy Methods for Diffusive Partial Differential Equations. Springer Briefs in Mathematics (Springer, Cham, 2016)Google Scholar
  164. 164.
    S. Kamenomostskaya (Kamin), On the Stefan problem. Mat. Sb. 53, 489–514 (1961)Google Scholar
  165. 165.
    S. Kamin, P. Rosenau, Propagation of thermal waves in an inhomogeneous medium. Commun. Pure Appl. Math. 34, 831–852 (1981)MathSciNetMATHCrossRefGoogle Scholar
  166. 166.
    S. Kamin, J.L. Vázquez, Fundamental solutions and asymptotic behaviour for the p-Laplacian equation. Rev. Mat. Iberoam. 4(2), 339–354 (1988)MathSciNetMATHCrossRefGoogle Scholar
  167. 167.
    S. Kamin, G. Reyes, J.L. Vázquez, Long time behavior for the inhomogeneous PME in a medium with rapidly decaying density. Discrete Contin. Dyn. Syst. 26, 521–549 (2010)MathSciNetMATHGoogle Scholar
  168. 168.
    S. Kaplan, On the growth of solutions of quasi-linear parabolic equations. Commun. Pure Appl. Math. 16, 305–330 (1963)MathSciNetMATHCrossRefGoogle Scholar
  169. 169.
    G. Karch, Nonlinear evolution equations with anomalous diffusion, in Qualitative Properties of Solutions to Partial Differential Equations. Jindrich Nečas Center for Mathematical Modelling Lecture Notes, vol. 5 (Matfyzpress, Prague, 2009), pp. 25–68Google Scholar
  170. 170.
    M. Kassmann, A priori estimates for integro-differential operators with measurable kernels. Calc. Var. 34, 1–21 (2009)MathSciNetMATHCrossRefGoogle Scholar
  171. 171.
    C. Kienzler, Flat fronts and stability for the porous medium equation. Dissertation, 2013. See also arxiv.org 1403.5811 (2014)Google Scholar
  172. 172.
    C. Kienzler, H. Koch, J.L. Vázquez, Flatness implies smoothness for solutions of the porous medium equation. arXiv:1609.09048.v1Google Scholar
  173. 173.
    S. Kim, K.-A. Lee, Hölder estimates for singular non-local parabolic equations. J. Funct. Anal. 261(12), 3482–3518 (2011)MathSciNetMATHCrossRefGoogle Scholar
  174. 174.
    D. Kinderlehrer, G. Stampacchia, An introduction to Variational Inequalities and Their Applications. Pure and Applied Mathematics, vol. 88 (Academic, New York, 1980)Google Scholar
  175. 175.
    J.R. King, Extremely high concentration dopant diffusion in silicon. IMA J. Appl. Math. 40(3), 163–181 (1988)CrossRefGoogle Scholar
  176. 176.
    J.R. King, Self-similar behaviour for the equation of fast nonlinear diffusion. Philos. Trans. R. Soc. Lond. A 343, 337–375 (1993)MATHCrossRefGoogle Scholar
  177. 177.
    J. King, P. McCabe, On the Fisher-KPP equation with fast nonlinear diffusion. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459(2038), 2529–2546 (2003)MathSciNetMATHCrossRefGoogle Scholar
  178. 178.
    J. King, A.A. Lacey, J.L. Vázquez, Persistence of corners in free boundaries in Hele-Shaw flow. Complex analysis and free boundary problems (St. Petersburg, 1994). European J. Appl. Math. 6(5), 455–490 (1995)Google Scholar
  179. 179.
    A. Kiselev, F. Nazarov, A. Volberg. Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Inv. Math. 167, 445–453 (2007)MathSciNetMATHCrossRefGoogle Scholar
  180. 180.
    A. Kiselev, F. Nazarov, R. Shterenberg, Blow up and regularity for fractal Burgers equation. Dyn. Partial Differ. Equ. 5, 211–240 (2008)MathSciNetMATHCrossRefGoogle Scholar
  181. 181.
    H. Koch, Non-Euclidean singular integrals and the porous medium equation. University of Heidelberg, Habilitation Thesis (1999). http://www.iwr.uniheidelberg.de/groups/amj/koch.html Google Scholar
  182. 182.
    A.N. Kolmogorov, I.G. Petrovskii, N.S. Piskunov, Etude de l’équation de diffusion avec accroissement de la quantité de matière, et son application à un problème biologique. Bjul. Moskowskogo Gos. Univ. 17, 1–26 (1937)Google Scholar
  183. 183.
    S.N. Kruzhkov, First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) (Russian) 81(123), 228–255 (1970)Google Scholar
  184. 184.
    O.A. Ladyzhenskaya, N.N. Ural’tseva, Linear and Quasilinear Elliptic Equations (Academic, New York, 1968) [Translated from the Russian]MATHGoogle Scholar
  185. 185.
    O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs, vol. 23 (American Mathematical Society, Providence, RI, 1968)Google Scholar
  186. 186.
    G. Lamé, B.P. Clapeyron, Mémoire sur la solidification par refroidissement d’un globe liquid. Ann. Chimie Phys. 47, 250–256 (1831)Google Scholar
  187. 187.
    N.S. Landkof, Foundations of Modern Potential Theory. Die Grundlehren der mathematischen Wissenschaften, Band 180 (Springer, New York, 1972) [Translated from the Russian by A.P. Doohovskoy]Google Scholar
  188. 188.
    L.S. Leibenzon, The Motion of a Gas in a Porous Medium, Complete Works, vol. 2 (Acad. Sciences URSS, Moscow, 1953) (Russian). First published in Neftanoe i slantsevoe khozyastvo, 10, 1929, and Neftanoe khozyastvo, 8–9, 1930 (Russian)Google Scholar
  189. 189.
    H.A. Levine, The role of critical exponents in blowup theorems. SIAM Rev. 32(2), 262–288 (1990)MathSciNetMATHCrossRefGoogle Scholar
  190. 190.
    D. Li, J.L. Rodrigo, X. Zhang, Exploding solutions for a nonlocal quadratic evolution problem. Rev. Mat. Iberoam. 26(1), 295–332 (2010)MathSciNetMATHCrossRefGoogle Scholar
  191. 191.
    G.M. Lieberman, Second Order Parabolic Differential Equations (World Scientific, River Edge, NJ, 1996)MATHCrossRefGoogle Scholar
  192. 192.
    F.H. Lin, P. Zhang, On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete Contin. Dyn. Syst. 6, 121–142 (2000)MathSciNetMATHGoogle Scholar
  193. 193.
    J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications (French). vol. 1. Travaux et Recherches Mathématiques, vol. 17 (Dunod, Paris 1968); vol. 2. Travaux et Recherches Mathématiques, vol. 18 (Dunod, Paris 1968); vol. 3. Travaux et Recherches Mathématiques, vol. 20 (Dunod, Paris, 1970)Google Scholar
  194. 194.
    S. Lisini, E. Mainini, A. Segatti, A gradient flow approach to the porous medium equation with fractional pressure. arXiv:1606.06787Google Scholar
  195. 195.
    P. Lu, L. Ni, J.L. Vázquez, C. Villani, Local Aronson-Bénilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds. J. Math. Pures Appl. (9) 91(1), 1–19 (2009)Google Scholar
  196. 196.
    A. Majda, E. Tabak, A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow, nonlinear phenomena in ocean dynamics (Los Alamos, NM, 1995). Phys. D. 98(2–4), 515–522 (1996)MathSciNetMATHCrossRefGoogle Scholar
  197. 197.
    J.M. Mazón, J.D. Rossi, J. Toledo, Fractional p-Laplacian evolution equations. J. Math. Pures Appl. (9) 105(6), 810–844 (2016)Google Scholar
  198. 198.
    A.M. Meirmanov, The Stefan Problem. de Gruyter Expositions in Mathematics, vol. 3 (Walter de Gruyter & Co., Berlin, 1992) [translated from the Russian]Google Scholar
  199. 199.
    A. Mellet, S. Mischler, C. Mouhot, Fractional diffusion limit for collisional kinetic equations. Arch. Ration. Mech. Anal. 199, 493–525 (2011)MathSciNetMATHCrossRefGoogle Scholar
  200. 200.
    R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetMATHCrossRefGoogle Scholar
  201. 201.
    J.W. Morgan, G. Tian, Ricci Flow and the Poincaré Conjecture. Clay Mathematics Monographs (American Mathematical Society, Providence, RI, 2007)Google Scholar
  202. 202.
    J. Moser, A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13, 457–468 (1960)MathSciNetMATHCrossRefGoogle Scholar
  203. 203.
    J. Moser, A Harnack inequality for parabolic differential equations. Commun. Pure Appl. Math. 17, 101–134 (1964)MathSciNetMATHCrossRefGoogle Scholar
  204. 204.
    R. Musina, A.I. Nazarov, On fractional Laplacians. Commun. Partial Differ. Equ. 39(9), 1780–1790 (2014)MathSciNetMATHCrossRefGoogle Scholar
  205. 205.
    M. Muskat, The Flow of Homogeneous Fluids Through Porous Media (McGraw-Hill, New York, 1937)MATHGoogle Scholar
  206. 206.
    J. Nash, Parabolic equations. Proc. Natl. Acad. Sci. USA 43, 754–758 (1957)MATHCrossRefGoogle Scholar
  207. 207.
    J. Nash, Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958)MathSciNetMATHCrossRefGoogle Scholar
  208. 208.
    R.H. Nochetto, E. Otarola, A.J. Salgado, A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15(3), 733–791 (2015)MathSciNetMATHCrossRefGoogle Scholar
  209. 209.
    R.H. Nochetto, E. Otarola, A.J. Salgado, A PDE approach to space-time fractional parabolic problems. SIAM J. Numer. Anal. 54(2), 848–873 (2016)MathSciNetMATHCrossRefGoogle Scholar
  210. 210.
    K. Nyström, O. Sande, Extension properties and boundary estimates for a fractional heat operator. Nonlinear Anal. 140, 29–37 (2016)MathSciNetMATHCrossRefGoogle Scholar
  211. 211.
    H. Okuda, J.M. Dawson, Theory and numerical simulation on plasma diffusion across a magnetic field. Phys. Fluids 16, 408–426 (1973)CrossRefGoogle Scholar
  212. 212.
    O.A. Oleinik, A.S. Kalashnikov, Y.-I. Chzou, The Cauchy problem and boundary problems for equations of the type of unsteady filtration. Izv. Akad. Nauk SSR Ser. Math. 22, 667–704 (1958) [in Russian]MATHGoogle Scholar
  213. 213.
    C. Pozrikidis, The Fractional Laplacian (Chapman and Hall/CRC, Boca Raton, 2016)MATHCrossRefGoogle Scholar
  214. 214.
    D. Puhst, On the evolutionary fractional p-Laplacian. Appl. Math. Res. Express 2015(2), 253–273 (2015)MathSciNetMATHCrossRefGoogle Scholar
  215. 215.
    G. Reyes, J.L. Vázquez, Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Commun. Pure Appl. Anal. 8, 493–508 (2009)MathSciNetMATHGoogle Scholar
  216. 216.
    S. Richardson, Some Hele Shaw flows with time-dependent free boundaries. J. Fluid Mech. 102, 263–278 (1981)MathSciNetMATHCrossRefGoogle Scholar
  217. 217.
    A. Rodríguez, J.L. Vázquez, Obstructions to existence in fast-diffusion equations J. Differ. Equ. 184(2), 348–385 (2002)MathSciNetMATHCrossRefGoogle Scholar
  218. 218.
    X. Ros-Oton, J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101, 275–302 (2014)MathSciNetMATHCrossRefGoogle Scholar
  219. 219.
    L.I. Rubinstein, The Stefan Problem. Translations of Mathematical Monographs, vol. 27 (American Mathematical Society, Providence, RI, 1971)Google Scholar
  220. 220.
    P.G. Saffman, G.I. Taylor. The penetration of fluid into a porous medium Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. Ser. A 245, 312–329 (1958)MathSciNetMATHCrossRefGoogle Scholar
  221. 221.
    S. Salsa, Partial Differential Equations in Action. From Modelling to Theory, 3rd edn. Unitext, vol. 99 (Springer, Berlin, 2016)Google Scholar
  222. 222.
    R.W. Schwab, L. Silvestre, Regularity for parabolic integro-differential equations with very irregular kernels. Anal. Partial Differ. Equ. 9(3), 727–772 (2016)MathSciNetMATHGoogle Scholar
  223. 223.
    C. Seis, Long-time asymptotics for the porous medium equation: The spectrum of the linearized operator. J. Differ. Equ. 256(3), 1191–1223 (2014)MathSciNetMATHCrossRefGoogle Scholar
  224. 224.
    S. Serfaty, J.L. Vazquez, A mean field equation as limit of nonlinear diffusion with fractional Laplacian operators. Calc. Var. Partial Differ. Equ. 49(3–4), 1091–1120 (2014)MathSciNetMATHCrossRefGoogle Scholar
  225. 225.
    J. Serrin, Local behavior of solutions of quasi-linear equations. Acta Math. 111, 247–302 (1964)MathSciNetMATHCrossRefGoogle Scholar
  226. 226.
    R. Servadei, E. Valdinoci, On the spectrum of two different fractional operators. Proc. R. Soc. Edinb. A 144(4), 831–855 (2014)MathSciNetMATHCrossRefGoogle Scholar
  227. 227.
    L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator. Ph. D. thesis, University of Texas at Austin (2005)Google Scholar
  228. 228.
    L. Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional Laplace Indiana Univ. Math. J. 55(3), 1155–1174 (2006)MathSciNetMATHGoogle Scholar
  229. 229.
    Y. Sire, J. L.Vázquez, B. Volzone, Symmetrization for fractional elliptic and parabolic equations and an isoperimetric application. Chin. Ann. Math. Ser. B 38(2), 661–686 (2017)MathSciNetMATHCrossRefGoogle Scholar
  230. 230.
    J.A. Smoller, Shock Waves and Reaction-Diffusion Equations (Springer, New York, 1982)MATHGoogle Scholar
  231. 231.
    H.M. Soner, Stochastic representations for nonlinear parabolic PDEs, in Handbook of Differential Equations: Evolutionary Equations. Handbook of Differential Equations, vol. III (Elsevier/North-Holland, Amsterdam, 2007), pp. 477–526Google Scholar
  232. 232.
    D. Stan, J.L. Vázquez, Asymptotic behaviour of the doubly nonlinear diffusion equation \(u_{t} = \Delta _{p}(u^{m})\) on bounded domains. Nonlinear Anal. 77, 1–32 (2013)MathSciNetCrossRefGoogle Scholar
  233. 233.
    D. Stan, J.L. Vázquez, The Fisher-KPP equation with nonlinear fractional diffusion. SIAM J. Math. Anal. 46(5), 3241–3276 (2014)MathSciNetMATHCrossRefGoogle Scholar
  234. 234.
    D. Stan, F. del Teso, J.L. Vázquez, Finite and infinite speed of propagation for porous medium equations with fractional pressure. Comptes Rendus Mathématique (Comptes Rendus Acad. Sci. Paris) 352(2), 123–128 (2014). arXiv:1311.7007Google Scholar
  235. 235.
    D. Stan, F. del Teso, J.L. Vázquez, Transformations of Self-Similar Solutions for porous medium equations of fractional type. Nonlinear Anal. 119, 62–73 (2015)MathSciNetMATHCrossRefGoogle Scholar
  236. 236.
    D. Stan, F. del Teso, J.L. Vázquez, Finite and infinite speed of propagation for porous medium equations with fractional pressure. J. Differ. Equ. 260(2), 1154–1199 (2016)MATHCrossRefGoogle Scholar
  237. 237.
    D. Stan, F. del Teso, J.L. Vázquez, Existence of weak solutions for porous medium equations with nonlocal pressure. arXiv:1609.05139Google Scholar
  238. 238.
    J. Stefan, Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere. Ann. Phys. Chemie 42, 269–286 (1891)MATHCrossRefGoogle Scholar
  239. 239.
    E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30 (Princeton University Press, Princeton, NJ, 1970)Google Scholar
  240. 240.
    P.R. Stinga, J.L. Torrea, Extension problem and Harnack’s inequality for some fractional operators. Comm. Partial Differ. Equ. 35, 2092–2122 (2010)MathSciNetMATHCrossRefGoogle Scholar
  241. 241.
    P.R. Stinga, J.L. Torrea, Regularity theory and extension problem for fractional nonlocal parabolic equations and the master equation. arXiv:1511.01945Google Scholar
  242. 242.
    A.M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. B 237(641), 37–72 (1952)MathSciNetCrossRefGoogle Scholar
  243. 243.
    E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. 49, 33–44 (2009)MathSciNetMATHGoogle Scholar
  244. 244.
    S.R.S. Varadhan, Lectures on Diffusion Problems and Partial Differential Equations. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 64 (Tata Institute of Fundamental Research, Bombay, 1980)Google Scholar
  245. 245.
    N.T. Varopoulos, Random walks and Brownian motion on manifolds. Symposia Mathematica, vol. XXIX (Cortona, 1984), 97–109, Sympos. Math., vol. XXIX (Academic, New York, 1987)Google Scholar
  246. 246.
    J.L. Vázquez, Nonexistence of solutions for nonlinear heat equations of fast-diffusion type. J. Math. Pures Appl. (9) 71(6), 503–526 (1992)Google Scholar
  247. 247.
    J.L. Vázquez, Asymptotic behaviour for the Porous Medium Equation posed in the whole space. J. Evol. Equ. 3, 67–118 (2003)MathSciNetMATHCrossRefGoogle Scholar
  248. 248.
    J.L. Vázquez, Asymptotic behaviour for the PME in a bounded domain. The Dirichlet problem. Monatshefte für Math. 142(1–2), 81–111 (2004)CrossRefGoogle Scholar
  249. 249.
    J.L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type. Oxford Lecture Series in Mathematics and Its Applications, vol. 33 (Oxford University Press, Oxford, 2006)Google Scholar
  250. 250.
    J.L. Vázquez, Perspectives in Nonlinear Diffusion: Between Analysis, Physics and Geometry. Proceedings of International Congress of Mathematicians. vol. I (European Mathematical Society, Zürich, 2007), pp. 609–634Google Scholar
  251. 251.
    J.L. Vázquez, The Porous Medium Equation. Mathematical Theory. Oxford Mathematical Monographs (The Clarendon Press/Oxford University Press, Oxford, 2007)Google Scholar
  252. 252.
    J.L. Vázquez, Nonlinear diffusion with fractional Laplacian operators, in Nonlinear Partial Differential Equations: the Abel Symposium 2010, ed. by H. Holden, K.H. Karlsen (Springer, Berlin, 2012), pp. 271–298CrossRefGoogle Scholar
  253. 253.
    J.L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Nonlinear Elliptic and Parabolic Differential Equations. Discrete Contin. Dyn. Syst. S 7(4), 857–885 (2014)Google Scholar
  254. 254.
    J.L. Vázquez, Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type. J. Eur. Math. Soc. 16(4), 769–803 (2014)MathSciNetMATHCrossRefGoogle Scholar
  255. 255.
    J.L. Vázquez, The mesa problem for the fractional porous medium equation. Interfaces Free Bound. 17(2), 261–286 (2015)MathSciNetMATHCrossRefGoogle Scholar
  256. 256.
    J.L. Vázquez, Fundamental solution and long time behaviour of the Porous Medium Equation in hyperbolic space. J. Math. Pures Appl. (9) 104(3), 454–484 (2015)Google Scholar
  257. 257.
    J.L. Vázquez, The Dirichlet Problem for the fractional p-Laplacian evolution equation. J. Differ. Equ. 260(7), 6038–6056 (2016)MathSciNetMATHCrossRefGoogle Scholar
  258. 258.
    J.L. Vázquez, Existence of maximal solutions for some very singular nonlinear fractional diffusion equations in 1D. J. Evol. Equ. 16, 723–758 (2016)MathSciNetMATHCrossRefGoogle Scholar
  259. 259.
    J.L. Vázquez, B. Volzone, Symmetrization for linear and nonlinear fractional parabolic equations of porous medium type. J. Math. Pures Appl. (9) 101(5), 553–582 (2014)Google Scholar
  260. 260.
    J.L. Vázquez, B. Volzone, Optimal estimates for fractional fast diffusion equations. J. Math. Pures Appl. (9) 103(2), 535–556 (2015)Google Scholar
  261. 261.
    J.L. Vázquez, A. de Pablo, F. Quirós, A. Rodríguez, Classical solutions and higher regularity for nonlinear fractional diffusion equations. J. Eur. Math. Soc. 19(7), 1949–1975 (2017)MathSciNetMATHCrossRefGoogle Scholar
  262. 262.
    L. Vlahos, H. Isliker, Y. Kominis, K. Hizonidis, Normal and anomalous diffusion: a tutorial, in Order and Chaos, ed. by T. Bountis, vol. 10 (Patras University Press, Patras, 2008)Google Scholar
  263. 263.
    E. Weinan, Dynamics of vortex-liquids in Ginzburg-Landau theories with applications to superconductivity. Phys. Rev. B 50(3), 1126–1135 (1994)Google Scholar
  264. 264.
    D.V. Widder, The Heat Equation (Academic, New York, 1975)MATHGoogle Scholar
  265. 265.
    Wikipedia, article Diffusion, February (2017)Google Scholar
  266. 266.
    P. Wilmott, S. Howison, J. Dewynne, The Mathematics of Financial Derivatives. A Student Introduction (Cambridge University Press, Cambridge, 1995)Google Scholar
  267. 267.
    W.A. Woyczyński, Lévy processes in the physical sciences, in Lévy Processes – Theory and Applications, ed. by T. Mikosch, O. Barndorff-Nielsen, S. Resnick (Birkhäuser, Boston, 2001), pp. 241–266CrossRefGoogle Scholar
  268. 268.
    S.T. Yau, On the heat kernel of a complete Riemannian manifold. J. Math. Pures Appl. (9) 57(2), 191–201 (1978)Google Scholar
  269. 269.
    Ya.B. Zel’dovich, Yu.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena II (Academic, New York, 1966)Google Scholar
  270. 270.
    X.H. Zhou, W.L. Xiao, J.C. Chen, Fractional porous medium and mean field equations in Besov spaces. Electron. J. Differ. Equ. 2014(199), 1–14 (2014)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department de MatemáticasUniversidad Autónoma de MadridMadridSpain

Personalised recommendations