Skip to main content

The Geometry of Diffusing and Self-Attracting Particles in a One-Dimensional Fair-Competition Regime

  • Chapter
  • First Online:
Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2186))

Abstract

We consider an aggregation-diffusion equation modelling particle interaction with non-linear diffusion and non-local attractive interaction using a homogeneous kernel (singular and non-singular) leading to variants of the Keller-Segel model of chemotaxis. We analyse the fair-competition regime in which both homogeneities scale the same with respect to dilations. Our analysis here deals with the one-dimensional case, building on the work in Calvez et al. (Equilibria of homogeneous functionals in the fair-competition regime), and provides an almost complete classification. In the singular kernel case and for critical interaction strength, we prove uniqueness of stationary states via a variant of the Hardy-Littlewood-Sobolev inequality. Using the same methods, we show uniqueness of self-similar profiles in the sub-critical case by proving a new type of functional inequality. Surprisingly, the same results hold true for any interaction strength in the non-singular kernel case. Further, we investigate the asymptotic behaviour of solutions, proving convergence to equilibrium in Wasserstein distance in the critical singular kernel case, and convergence to self-similarity for sub-critical interaction strength, both under a uniform stability condition. Moreover, solutions converge to a unique self-similar profile in the non-singular kernel case. Finally, we provide a numerical overview for the asymptotic behaviour of solutions in the full parameter space demonstrating the above results. We also discuss a number of phenomena appearing in the numerical explorations for the diffusion-dominated and attraction-dominated regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.A. Ambrosio, N. Gigli, G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics (Birkhäuser, Basel, 2005)

    Google Scholar 

  2. D. Balagué, J.A. Carrillo, T. Laurent, G. Raoul, Dimensionality of local minimizers of the interaction energy. Arch. Ration. Mech. Anal. 209(3), 1055–1088 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Barthe, Inégalités de Brascamp-Lieb et convexité. C. R. Math. Acad. Sci. Paris 324, 885–888 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Barthe, On a reverse form of the Brascamp-Lieb inequality. Invent. Math. 310, 685–693 (1998)

    MathSciNet  MATH  Google Scholar 

  5. W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. Math. 138, 213–242 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Bian, J.-G. Liu, Dynamic and steady states for multi-dimensional Keller-Segel model with diffusion exponent m > 0. Commun. Math. Phys. 323(3), 1017–1070 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Biler, T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles. Colloq. Math. 66, 319–334 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Biler, G. Karch, P. Laurençot, T. Nadzieja, The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane. Math. Methods Appl. Sci. 29(13), 1563–1583 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Blanchet, J. Dolbeault, B. Perthame, Two dimensional Keller-Segel model in \(\mathbb{R}^{2}\): optimal critical mass and qualitative properties of the solution. Electron. J. Differ. Equ. 2006(44), 1–33 (electronic) (2006)

    Google Scholar 

  10. A. Blanchet, V. Calvez, J.A. Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model. SIAM J. Numer. Anal. 46(2), 691–721 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Blanchet, J.A. Carrillo, N. Masmoudi, Infinite time aggregation for the critical Patlak-Keller-Segel model in \(\mathbb{R}^{2}\). Commun. Pure Appl. Math. 61(10), 1449–1481 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Blanchet, J.A. Carrillo, P. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions. Calc. Var. Partial Differ. Equ. 35(2), 133–168 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Blanchet, E.A. Carlen, J.A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model. J. Funct. Anal. 262(5), 2142–2230 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Bodnar, J.J.L. Velázquez, Friction dominated dynamics of interacting particles locally close to a crystallographic lattice. Math. Methods Appl. Sci. 36(10), 1206–1228 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Bolley, I. Gentil, A. Guillin, Uniform convergence to equilibrium for granular media. Arch. Ration. Mech. Anal. 208(2), 429–445 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Bonforte, J. Dolbeault, G. Grillo, J.L. Vázquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities. Proc. Natl. Acad. Sci. USA 107(38), 16459–16464 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44, 375–417 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. V. Calvez, J.A. Carrillo, Volume effects in the Keller-Segel model: energy estimates preventing blow-up. J. Math. Pures Appl. 86, 155–175 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Calvez, J.A. Carrillo, Refined asymptotics for the subcritical Keller-Segel system and related functional inequalities. Proc. Am. Math. Soc. 140(10), 3515–3530 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. V. Calvez, L. Corrias, Blow-up dynamics of self-attracting diffusive particles driven by competing convexities. Discrete Contin. Dyn. Syst. Ser. B 18(8), 2029–2050 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. V. Calvez, T.O. Gallouët, Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up. Discrete Contin. Dyn. Syst. 36(3), 1175–1208 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. V. Calvez, T.O. Gallouët, Blow-up phenomena for gradient flows of discrete homogeneous functionals. Preprint arXiv:1603.05380v2

    Google Scholar 

  23. V. Calvez, B. Perthame, M. Sharifi tabar, Modified Keller-Segel system and critical mass for the log interaction kernel, in Stochastic Analysis and Partial Differential Equations. Contemporary Mathematics, vol. 429, pp. 45–62 (American Mathematical Society, Providence, RI, 2007)

    Google Scholar 

  24. V. Calvez, J.A. Carrillo, F. Hoffmann, Equilibria of homogeneous functionals in the fair-competition regime. Preprint arXiv:1610.00939.

    Google Scholar 

  25. J.F. Campos, J. Dolbeault, A functional framework for the Keller-Segel system: logarithmic Hardy-Littlewood-Sobolev and related spectral gap inequalities. C. R. Math. Acad. Sci. Paris 350(21–22), 949–954 (2012)

    MathSciNet  MATH  Google Scholar 

  26. J.F. Campos, J. Dolbeault, Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane. Commun. Partial Differ. Equ. 39(5), 806–841 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. E.A. Carlen, A. Figalli, Stability for a GNS inequality and the log-HLS inequality, with application to the critical mass Keller-Segel equation. Duke Math. J. 162(3), 579–625 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. E.A. Carlen, M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on \(\mathbb{S}^{n}\). Geom. Funct. Anal. 2, 90–104 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. E.A. Carlen, J.A. Carrillo, M. Loss, Hardy-Littlewood-Sobolev inequalities via fast diffusion flows. Proc. Natl. Acad. Sci. USA 107(46), 19696–19701 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. J.A. Carrillo, D. Slepčev, Example of a displacement convex functional of first order. Calc. Var. Partial Differ. Equ. 36(4), 547–564 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. J.A. Carrillo, Y. Sugiyama, Compactly supported stationary states of the degenerate Keller-Segel system in the diffusion-dominated regime. Preprint arXiv:1612.05375

    Google Scholar 

  32. J.A. Carrillo, G. Toscani, Asymptotic L 1-decay of solutions of the porous medium equation to self-similarity. Indiana Univ. Math. J. 49(1), 113–142 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. J.A. Carrillo, R.J. McCann, C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam. 19, 1–48 (2003)

    MathSciNet  MATH  Google Scholar 

  34. J.A. Carrillo, R.J. McCann, C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Ration. Mech. Anal. 179, 217–263 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. J.A. Carrillo, L.C.F. Ferreira, J.C. Precioso, A mass-transportation approach to a one dimensional fluid mechanics model with nonlocal velocity. Adv. Math. 231(1), 306–327 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. J.A. Carrillo, S. Lisini, E. Mainini, Uniqueness for Keller-Segel-type chemotaxis models. Discrete Contin. Dyn. Syst. 34(4), 1319–1338 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. J.A. Carrillo, D. Castorina, B. Volzone, Ground states for diffusion dominated free energies with logarithmic interaction. SIAM J. Math. Anal. 47(1), 1–25 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. J.A. Carrillo, S. Hittmeir, B. Volzone, Y. Yao, Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics. Preprint arXiv:1603.07767

    Google Scholar 

  39. S. Chandrasekhar, Principles of Stellar Dynamics, Enlarged edn. (Dover Publications, New York, 1960)

    Google Scholar 

  40. P.H. Chavanis, R. Mannella, Self-gravitating Brownian particles in two dimensions: the case of N = 2 particles. Eur. Phys. J. B 78(2), 139–165 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. P.-H. Chavanis, P. Laurençot, M. Lemou, Chapman-Enskog derivation of the generalized Smoluchowski equation. Phys. A 341(1–4), 145–164 (2004)

    Article  MathSciNet  Google Scholar 

  42. L. Chen, J. Wang, Exact criterion for global existence and blow up to a degenerate Keller-Segel system. Doc. Math. 19, 103–120 (2014)

    MathSciNet  MATH  Google Scholar 

  43. L. Chen, J.-G. Liu, J. Wang, Multidimensional degenerate Keller-Segel system with critical diffusion exponent 2n∕(n + 2). SIAM J. Math. Anal. 44(2), 1077–1102 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. S. Childress, J.K. Percus, Nonlinear aspects of chemotaxis. Math. Biosci. 56, 217–237 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  45. T. Cieślak, P. Laurençot, Looking for critical nonlinearity in the one-dimensional quasilinear Smoluchowski-Poisson system. Discrete Contin. Dyn. Syst. 26(2), 417–430 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. T. Cieślak, P. Laurençot, Global existence vs. blowup in a one-dimensional Smoluchowski-Poisson system, in Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol. 80 (Birkhäuser/Springer, Basel, 2011), pp. 95–109

    Google Scholar 

  47. D. Cordero-Erausquin, B. Nazaret, C. Villani, A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182(2), 307–332 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. L. Corrias, B. Perthame, H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milan J. Math. 72, 1–28 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. K. Craig, Nonconvex gradient flow in the Wasserstein metric and applications to constrained nonlocal interactions. Preprint arXiv:1512.07255v1.

    Google Scholar 

  50. J. Dolbeault, B. Perthame, Optimal critical mass in the two dimensional Keller-Segel model in \(\mathbb{R}^{2}\). C. R. Math. Acad. Sci. Paris 339, 611–616 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  51. G. Egaña-Fernández, S. Mischler, Uniqueness and long time asymptotic for the Keller-Segel equation: the parabolic-elliptic case. Arch. Ration. Mech. Anal. 220(3), 1159–1194 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. H. Gajewski, K. Zacharias, Global behavior of a reaction-diffusion system modelling chemotaxis. Math. Nachr. 195, 77–114 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  53. R.J. Gardner, The Brunn-Minkowski inequality. Bull. Am. Math. Soc. 39, 355–405 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  54. L. Gosse, G. Toscani, Lagrangian numerical approximations to one-dimensional convolution-diffusion equations. SIAM J. Sci. Comput. 28(4), 1203–1227 (electronic) (2006)

    Google Scholar 

  55. M.A. Herrero, J.J.L. Velázquez, A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 24(4), 633–683 (1998/1997)

    Google Scholar 

  56. D.D. Holm, V. Putkaradze, Formation of clumps and patches in self-aggregation of finite-size particles. Phys. D 220(2), 183–196 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  57. W. Jäger, S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soc. 329, 819–824 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  58. E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MATH  Google Scholar 

  59. E.F. Keller, L.A. Segel, Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971)

    Article  MATH  Google Scholar 

  60. T. Kolokolnikov, J.A. Carrillo, A. Bertozzi, R. Fetecau, M. Lewis, Emergent behaviour in multi-particle systems with non-local interactions [Editorial]. Phys. D 260, 1–4 (2013)

    Article  MathSciNet  Google Scholar 

  61. E.H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. Math. 118, 349–374 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  62. E.H. Lieb, M. Loss, Analysis. Graduate Studies in Mathematics, 2nd edn., vol. 14 (American Mathematical Society, Providence, RI, 2001)

    Google Scholar 

  63. J.-G. Liu, J. Wang, A note on L -bound and uniqueness to a degenerate Keller-Segel model. Acta Appl. Math. 142, 173–188 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  64. R.J. McCann, Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80, 309–323 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  65. R.J. McCann, A convexity principle for interacting gases. Adv. Math. 128, 153–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  66. D. Morale, V. Capasso, K. Oelschläger, An interacting particle system modelling aggregation behavior: from individuals to populations. J. Math. Biol. 50(1), 49–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  67. T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5, 581–601 (1995)

    MathSciNet  MATH  Google Scholar 

  68. V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology. J. Theor. Biol. 42, 63–105 (1973)

    Article  Google Scholar 

  69. K. Oelschläger, Large systems of interacting particles and the porous medium equation. J. Differ. Equ. 88(2), 294–346 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  70. F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26(1–2), 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  71. B. Perthame, Transport Equations in Biology. Frontiers in Mathematics (Birkhäuser, Basel, 2006)

    Google Scholar 

  72. P. Raphaël, R. Schweyer, On the stability of critical chemotactic aggregation. Math. Ann. 359(1–2), 267–377 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  73. G. Ströhmer, Stationary states and moving planes, in Parabolic and Navier-Stokes Equations. Part 2. Banach Center Publications, vol. 81 (Institute of Mathematics, Polish Academy of Sciences, Warsaw, 2008), pp. 501–513

    Google Scholar 

  74. Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems. Differ. Integral Equ. 19(8), 841–876 (2006)

    MathSciNet  MATH  Google Scholar 

  75. Y. Sugiyama, Application of the best constant of the Sobolev inequality to degenerate Keller-Segel models. Adv. Differ. Equ. 12(2), 121–144 (2007)

    MathSciNet  MATH  Google Scholar 

  76. Y. Sugiyama, The global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis. Differ. Integral Equ. 20(2), 133–180 (2007)

    MathSciNet  MATH  Google Scholar 

  77. Y. Sugiyama, H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term. J. Differ. Equ. 227(1), 333–364 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  78. C.M. Topaz, A.L. Bertozzi, M.A. Lewis, A nonlocal continuum model for biological aggregation. Bull. Math. Biol. 68, 1601–1623 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  79. J.L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations: Equations of Porous Medium Type. Oxford Lecture Series in Mathematics and Its Applications, vol. 33 (Oxford University Press, Oxford, 2006), xiv+234 pp. http://dx.doi.org/10.1093/acprof:oso/9780199202973.001.0001

  80. J.L. Vázquez, The Porous Medium Equation: Mathematical Theory. Oxford Mathematical Monographs (The Clarendon Press/Oxford University Press, Oxford, 2007), xxii+624 pp. ISBN: 978-0-19-856903-9; 0-19-856903-3

    Google Scholar 

  81. C. Villani, Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58 (American Mathematical Society, Providence, RI, 2003)

    Google Scholar 

  82. Y. Yao, Asymptotic behavior for critical Patlak-Keller-Segel model and a repulsive-attractive aggregation equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(1), 81–101 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

VC received funding for this project from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 639638). JAC was partially supported by the Royal Society via a Wolfson Research Merit Award. FH acknowledges support from the EPSRC grant number EP/H023348/1 for the Cambridge Centre for Analysis. The authors are very grateful to the Mittag-Leffler Institute for providing a fruitful working environment during the special semester Interactions between Partial Differential Equations & Functional Inequalities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Antonio Carrillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Calvez, V., Carrillo, J.A., Hoffmann, F. (2017). The Geometry of Diffusing and Self-Attracting Particles in a One-Dimensional Fair-Competition Regime. In: Bonforte, M., Grillo, G. (eds) Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions. Lecture Notes in Mathematics(), vol 2186. Springer, Cham. https://doi.org/10.1007/978-3-319-61494-6_1

Download citation

Publish with us

Policies and ethics