Advertisement

Limit Cycles

  • Stephen LynchEmail author
Chapter

Abstract

To give a brief historical background.

Bibliography

  1. [1]
    A. Agarwal and N. Ananthkrishnan, Bifurcation analysis for onset and cessation of surge in axial flow compressors, International Journal of Turbo & Jet Engines, 17(3) (2000), 207–217.Google Scholar
  2. [2]
    G. Bella, Multiple cycles and the Bautin bifurcation in the Goodwin model of a class struggle, Nonlinear Analysis: Modelling and Control, 18(3), (2013), 265–274.Google Scholar
  3. [3]
    R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membranes, J. Biophys., 1182 (1961), 445–466.Google Scholar
  4. [4]
    E.J. Hinch, Perturbation Methods, Cambridge University Press, 2002.Google Scholar
  5. [5]
    A.L. Hodgkin and A.F. Huxley, A qualitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117 (1952), 500–544. Reproduced in Bull. Math. Biol. 52 (1990) 25–71.Google Scholar
  6. [6]
    A. Liénard, Étude des oscillations entrenues, Revue Génerale de Électricité, 23 (1928), 946–954.Google Scholar
  7. [7]
    Han Mao’an, Bifurcation Theory of Limit Cycles, Alpha Science International Limited, Oxford, 2016.Google Scholar
  8. [8]
    J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating 1214-nerve axons, Proc. IRL, 50 (1970), 2061–2070.Google Scholar
  9. [9]
    A.H. Nayfeh, Perturbation Methods, Wiley-Interscience, 2000.Google Scholar
  10. [10]
    J.C. Neu, Singular Perturbation in the Physical Sciences (Graduate Studies in Mathematics), American Mathematical Society, Rhode Island, 2015.Google Scholar
  11. [11]
    D.B. Owens, F.J. Capone, R.M. Hall, J.M. Brandon and J.R. Chambers, Transonic free-to-roll analysis of abrupt wing stall on military aircraft, Journal of Aircraft, 41(3) (2004), 474–484.Google Scholar
  12. [12]
    M.S. Padin, F.I. Robbio, J.L. Moiola and G.R. Chen, On limit cycle approximations in the van der Pol oscillator, Chaos, Solitons and Fractals, 23 (2005), 207–220.Google Scholar
  13. [13]
    L. Perko, Differential Equations and Dynamical Systems, 3rd ed., Springer-Verlag, Berlin, New York, Heidelberg, 2006.Google Scholar
  14. [14]
    J. Rayleigh, The Theory of Sound, Dover, New York, 1945.Google Scholar
  15. [15]
    C. Rocsoreanu, A. Georgeson and N. Giurgiteanu, The Fitzhugh-Nagumo Model: Bifurcation and Dynamics, Kluwer, Dordrecht, Netherlands, 2000.Google Scholar
  16. [16]
    B. Shivamoggi, Perturbation Methods for Differential Equations, Birkhäuser, Boston, 2006.Google Scholar
  17. [17]
    B. van der Pol, On relaxation oscillations, Philos. Magazine 7 (1926), 901–912, 946–954.Google Scholar
  18. [18]
    Ye Yan Qian, Theory of Limit Cycles, Translations of Mathematical Monographs, 66, American Mathematical Society, Rhode Island, 1986.Google Scholar
  19. [19]
    J.A. Yorke (Contributor), K. Alligood (Ed.), and T. Sauer (Ed.), Chaos: An Introduction to Dynamical Systems, Springer-Verlag, New York, 1996.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computing, Mathematics and Digital TechnologyManchester Metropolitan UniversityManchesterUK

Personalised recommendations