Chaos Control and Synchronization

  • Stephen LynchEmail author


To provide a brief historical introduction to chaos control and synchronization.


  1. [1]
    H.D.I. Abarbanel, N.F. Rulkov and M.M. Sushchik, Generalized synchronization of chaos: the auxiliary system approach, Phys. Rev. E 53(5), (1996), 4528–4535.Google Scholar
  2. [2]
    A.T. Azar (Editor), Fractional Order Control and Synchronization of Chaotic Systems (Studies in Computational Intelligence), Springer, New York, 2017.Google Scholar
  3. [3]
    A. Balanov, N. Janson, D. Postnov, and O. Sosnovtseva, Synchronization: From Simple to Complex, Springer-Verlag, New York, 2008.zbMATHGoogle Scholar
  4. [4]
    S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares and C. S. Zhou, The synchronization of chaotic systems, Physics Reports, 366 (2002), 1–101.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M. Buchanan, Fascinating rhythm, New Scientist, 3 Jan., (1998), 20–25.Google Scholar
  6. [6]
    N.P. Chau, Controlling chaos by periodic proportional pulses, Phys. Lett. A 234, (1997), 193–197.Google Scholar
  7. [7]
    K.M. Cuomo and A.V. Oppenheim, Circuit implementation of synchronized chaos with applications to communications, Phys. Rev. Lett., 71, (1993), 65–68.Google Scholar
  8. [8]
    W.L. Ditto, S.N. Rausseo, and M.L. Spano, Experimental control of chaos. Phys. Rev. Lett. 65, (1990), 3211–3214.Google Scholar
  9. [9]
    R. Femat and G. Solis-Perales, Robust Synchronization of Chaotic Systems via Feedback, Springer-Verlag, New York, 2008.zbMATHGoogle Scholar
  10. [10]
    A. Garfinkel, M.L. Spano, W.L. Ditto, and J.N. Weiss, Controlling cardiac chaos, Science 257, (1992), 1230–1235.Google Scholar
  11. [11]
    L. Glass, Synchronization and rhythmic processes in physiology, Nature 410, (2001), 277–284.Google Scholar
  12. [12]
    E.R. Hunt, Stabilizing high-period orbits in a chaotic system - the diode resonator, Phys. Rev. Lett. 67, (1991), 1953–1955.Google Scholar
  13. [13]
    T. Kapitaniak, Controlling Chaos: Theoretical and Practical Methods in Non-linear Dynamics, Academic Press, 1996.Google Scholar
  14. [14]
    T. Kapitaniak, Chaos for Engineers: Theory, Applications & Control, Springer-Verlag, New York, Second ed., 2000.Google Scholar
  15. [15]
    M.A. Khan, Chaos Control, Chaos Synchronization and Its Application, LAP Lambert Academic Publishing, Saabrücken, 2016.Google Scholar
  16. [16]
    E. Klein, R. Mislovaty, I. Kanter, and W. Kinzel, Public-channel cryptography using chaos synchronization, Phys. Rev. E 72(1): Art. No. 016214 Part 2, 2005.Google Scholar
  17. [17]
    Y.N. Li, L. Chen, Z.S. Cai, and X.Z. Zhao, Experimental study of chaos synchronization in the Belousov-Zhabotinsky chemical system, Chaos Solitons and Fractals 22(4), (2004), 767–771.Google Scholar
  18. [18]
    L. Luo and P.L. Chu, Optical secure communications with chaotic erbium-doped fiber lasers, J. Opt. Soc. Amer. B 15, (1998), 2524–2530.Google Scholar
  19. [19]
    S. Lynch and A.L. Steele, Controlling chaos in nonlinear bistable optical resonators, Chaos, Solitons and Fractals, 11-5, (2000), 721–728.Google Scholar
  20. [20]
    E. Mosekilde, Y. Maistrenko, and D. Postnov, Chaotic Synchronization, World Scientific, Singapore, 2002.CrossRefzbMATHGoogle Scholar
  21. [21]
    E. Ott, C. Grebogi, and J.A. Yorke, Controlling chaos, Phys. Rev. Lett. 64, (1990), 1196–1199.Google Scholar
  22. [22]
    L.M. Pecora and T.L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64, (1990), 821–824.Google Scholar
  23. [23]
    R. Roy, T.W. Murphy, T.D. Maier, Z. Gills, and E.R. Hunt, Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system, Phys. Rev. Lett. 68, (1992), 1259–1262.Google Scholar
  24. [24]
    T. Shinbrot, C. Grebogi, E. Ott, and J.A. Yorke, Using chaos to direct trajectories to targets, Phys. Rev. Lett. 65, (1990), 3215–3218.Google Scholar
  25. [25]
    J. Singer, Y-Z. Wang, and H.H. Bau, Controlling a chaotic system, Phys. Rev. Lett. 66, (1991), 1123–1125.Google Scholar
  26. [26]
    S.H. Strogatz, Sync: The Emerging Science of Spontaneous Order, Theia, New York, 2003.Google Scholar
  27. [27]
    C.W. Wu, Synchronization in Coupled Chaotic Circuits and Systems, World Scientific, Singapore, 2002.CrossRefzbMATHGoogle Scholar
  28. [28]
    S. Yousefi, Y. Maistrenko, and S. Popovych, Complex dynamics in a simple model of interdependent open economies, Discrete dynamics in nature and society, 5(3), (2000), 161–177.Google Scholar
  29. [29]
    E. Zeraoulia Chaos Control and Synchronization: Advancing Perspectives, LAP LAMBERT Academic Publishing, Saarbrcken, 2012.Google Scholar
  30. [30]
    X.H. Zhang and S.B. Zhou, Chaos synchronization for bi-directional coupled two-neuron systems with discrete delays, Lecture notes in Computer Science 3496, (2005), 351–356.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computing, Mathematics and Digital TechnologyManchester Metropolitan UniversityManchesterUK

Personalised recommendations