Decision Points for Non-determinism in Concurrent Model Synchronization with Triple Graph Grammars

  • Frank TrollmannEmail author
  • Sahin Albayrak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10374)


Model synchronization is one of the core activities in model driven engineering. One of the challenges is non-determinism when multiple valid solutions exist. This is exasperated in triple graph based approaches, where additional non-determinism may arise from the alignment of the synchronized changes and the grammar. Non-determinism is often the result of multiple decision points during the synchronization process. Handling these decisions where they occur can reduce the overall complexity of dealing with non-determinism. In this paper we analyse a triple graph based synchronization approach to identify these decisions, extend the approach to clearly separate them and discuss the relation to formal properties of model synchronization.


Model synchronization Triple graphs Model driven engineering 


  1. 1.
    Becker, S.M., Lohmann, S., Westfechtel, B.: Rule execution in graph-based incremental interactive integration tools. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 22–38. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30203-2_4 CrossRefGoogle Scholar
  2. 2.
    Cicchetti, A., Di Ruscio, D., Romina, E., Alfonso, P.: Logical constraints for managing non-determinism in bidirectional model transformations. In: International Workshop on Model-Driven Engineering, Logic and Optimization: Friends or Foes? (MELO 2011) (2011)Google Scholar
  3. 3.
    Diskin, Z., Xiong, Y., Czarnecki, K.: From state - to delta-based bidirectional model transformations: the asymmetric case. J. Obj. Technol. 10(6), 1–25 (2011)Google Scholar
  4. 4.
    Diskin, Z., Maibaum, T., Czarnecki, K.: Intermodeling, queries, and kleisli categories. In: Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 163–177. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28872-2_12 CrossRefGoogle Scholar
  5. 5.
    Diskin, Z., Eramo, R., Pierantonio, A., Czarnecki, K.: Incorporating uncertainty into bidirectional model transformations and their delta-lens formalization. In: Bx@ ETAPS, pp. 15–31 (2016)Google Scholar
  6. 6.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information preserving bidirectional model transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 72–86. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-71289-3_7 CrossRefGoogle Scholar
  8. 8.
    Ehrig, H., Ehrig, K., Hermann, F.: From model transformation to model integration based on the algebraic approach to triple graph grammars. Electron. Commun. EASST 10 (2008).,
  9. 9.
    Eramo R., Marinelli R., Pierantonio A., Rosa G.: Towards analysing non-determinism in bidirectional transformations. In: Proceedings of the Analysis of Model Transformations Workshop (AMT2014) CEUR, pp. 76–85 (2014)Google Scholar
  10. 10.
    Eramo, R., Pierantonio, A., Rosa. G.: Managing uncertainty in bidirectional model transformations. In: Proceedings of the 2015 International Conference on Software Language Engineering. ACM (2015)Google Scholar
  11. 11.
    Giese, H., Wagner, R.: From model transformation to incremental bidirectional model synchronization. Softw. Syst. Model. 8, 1:21–1:43 (2008). SpringerGoogle Scholar
  12. 12.
    Gottmann, S., Hermann, F., Nachtigall, N., Braatz, B., Ermel, C., Ehrig, H., Engel, T.: Correctness and completeness of generalised concurrent model synchronisation based on triple graph grammars. In: Proceedings of the International Workshop on Analysis of Model Transformations 2013 (AMT 2013), CEUR Workshop Proceedings, vol. 1112, pp. 67–76 (2013)Google Scholar
  13. 13.
    Hermann, F., Ehrig, H., Ermel, C., Orejas, F.: Concurrent model synchronization with conflict resolution based on triple graph grammars. In: Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 178–193. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28872-2_13 CrossRefGoogle Scholar
  14. 14.
    Michalis, F., Salay, R., Chechik, M.: Partial models: towards modeling and reasoning with uncertainty. In: Proceedings of the 34th International Conference on Software Engineering (ICSE2012), pp. 573–583. IEEE (2012)Google Scholar
  15. 15.
    Orejas, F., Boronat, A., Ehrig, H., Hermann, F., Schölzel, H.: On propagation-based concurrent model synchronization. Electron. Commun. EASST 57, 19 (2013)Google Scholar
  16. 16.
    Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1995). doi: 10.1007/3-540-59071-4_45 CrossRefGoogle Scholar
  17. 17.
    Trollmann, F., Albayrak, S.: Extending model synchronization results from triple graph grammars to multiple models. In: Van Gorp, P., Engels, G. (eds.) ICMT 2016. LNCS, vol. 9765, pp. 91–106. Springer, Cham (2016). doi: 10.1007/978-3-319-42064-6_7 CrossRefGoogle Scholar
  18. 18.
    Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Incremental model synchronization for efficient run-time monitoring. In: Ghosh, S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 124–139. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12261-3_13 CrossRefGoogle Scholar
  19. 19.
    Xiong, Y., Song, H., Hu, Z., Takeichi, M.: Synchronizing concurrent model updates based on bidirectional transformation. Int. J. Softw. Syst. Model. (SoSyM) 12(1), 89–104 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering and Computer Science, DAI-LaborTU-BerlinBerlinGermany

Personalised recommendations