Skip to main content

Reducing the Verbosity of Imperative Model Refinements by Using General-Purpose Language Facilities

  • Conference paper
  • First Online:
Theory and Practice of Model Transformation (ICMT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10374))

  • 581 Accesses

Abstract

Refinements are model transformations that leave large parts of the source models unchanged. Therefore, if refinements are executed outplace, model elements need to be copied to the target model. Refinements written in imperative languages are increasingly verbose, unless suitable language facilities exist for creating these copies implicitly. Thus, for languages restricted to general-purpose facilities, the verbosity of refinements is still an open problem. Existing approaches towards reducing this verbosity suffer from the complexity of developing a higher-order transformation to synthesize the copying code. In this paper, we propose a generic transformation library for creating implicit copies, reducing the verbosity without a higher-order transformation. We identify the underlying general-purpose language facilities, and compare state-of-the-art languages against these requirements. We give a proof of concept using the imperative QVTo language, and showcase the ability of our library to reduce the verbosity of an industrial-scale transformation chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ckrause.org/2013/04/copying-emf-models-with-henshin.html

  2. 2.

    http://muml.org/implicitcopy/updates

References

  1. Amstel, M.F., Brand, M.G.J.: Model transformation analysis: staying ahead of the maintenance nightmare. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 108–122. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21732-6_8

    Chapter  Google Scholar 

  2. Anjorin, A., Saller, K., Lochau, M., Schürr, A.: Modularizing triple graph grammars using rule refinement. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 340–354. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54804-8_24

    Chapter  Google Scholar 

  3. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced concepts and tools for in-place EMF model transformations. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–135. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16145-2_9

    Chapter  Google Scholar 

  4. Batot, E., Sahraoui, H.A., Syriani, E., Molins, P., Sboui, W.: Systematic mapping study of model transformations for concrete problems. In: MODELSWARD 2016, pp. 176–183. SciTePress (2016)

    Google Scholar 

  5. Becker, S., Dziwok, S., Gerking, C., Heinzemann, C., Schäfer, W., Meyer, M., Pohlmann, U.: The MechatronicUML method. In: ICSE Companion 2014, pp. 614–615. ACM (2014)

    Google Scholar 

  6. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A.: Model transformations? transformation models!. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MODELS 2006. LNCS, vol. 4199, pp. 440–453. Springer, Heidelberg (2006). doi:10.1007/11880240_31

    Chapter  Google Scholar 

  7. Denil, J., Cicchetti, A., Biehl, M., Meulenaere, P.D., Eramo, R., Demeyer, S., Vangheluwe, H.: Automatic deployment space exploration using refinement transformations. Electronic Communications of the EASST 50 (2011)

    Google Scholar 

  8. Freund, M., Braune, A.: A generic transformation algorithm to simplify the development of mapping models. In: MoDELS 2016, pp. 284–294. ACM (2016)

    Google Scholar 

  9. Gerking, C., Dziwok, S., Heinzemann, C., Schäfer, W.: Domain-specific model checking for cyber-physical systems. In: MoDeVVa 2015, pp. 18–27 (2015)

    Google Scholar 

  10. Gerpheide, C.M., Schiffelers, R.R.H., Serebrenik, A.: Assessing and improving quality of QVTo model transformations. Software Qual. J. 24(3), 797–834 (2016)

    Article  Google Scholar 

  11. Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the compositional verification of real-time UML designs. In: ESEC/FSE 2003, pp. 38–47. ACM (2003)

    Google Scholar 

  12. Goldschmidt, T., Wachsmuth, G.: Refinement transformation support for QVT relational transformations. In: MDSE 2008 (2008)

    Google Scholar 

  13. Gorp, P., Keller, A., Janssens, D.: Transformation language integration based on profiles and higher order transformations. In: Gašević, D., Lämmel, R., Wyk, E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 208–226. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00434-6_14

    Chapter  Google Scholar 

  14. Hebig, R., Khelladi, D., Bendraou, R.: Approaches to co-evolution of metamodels and models: a survey. IEEE Trans. Softw. Eng. 43(5), 396–414 (2016)

    Google Scholar 

  15. Hemel, Z., Kats, L.C.L., Groenewegen, D.M., Visser, E.: Code generation by model transformation: a case study in transformation modularity. Softw. Syst. Model. 9(3), 375–402 (2010)

    Article  Google Scholar 

  16. Herrmannsdörfer, M., Wachsmuth, G.: Coupled evolution of software metamodels and models. In: Mens, T., Serebrenik, A., Cleve, A. (eds.) Evolving Software Systems, pp. 33–63. Springer, Heidelberg (2014)

    Google Scholar 

  17. Jézéquel, J.M.: Model driven design and aspect weaving. Softw. Syst. Model. 7(2), 209–218 (2008)

    Article  Google Scholar 

  18. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool. Sci. Comput. Program. 72(1–2), 31–39 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kapová, L., Goldschmidt, T.: Automated feature model-based generation of refinement transformations. In: SEAA 2009, pp. 141–148 (2009)

    Google Scholar 

  20. Kapová, L., Goldschmidt, T., Happe, J., Reussner, R.H.: Domain-specific templates for refinement transformations. In: MDI 2010, pp. 69–78. ACM (2010)

    Google Scholar 

  21. Kolovos, D.S., Paige, R.F., Polack, F., Rose, L.M.: Update transformations in the small with the Epsilon Wizard Language. J. Object Technol. 6(9), 53–69 (2007)

    Article  Google Scholar 

  22. Kraas, A.: Realizing model simplifications with QVT operational mappings. In: OCL 2014, pp. 53–62 (2014)

    Google Scholar 

  23. Krause, C., Dyck, J., Giese, H.: Metamodel-specific coupled evolution based on dynamically typed graph transformations. In: Duddy, K., Kappel, G. (eds.) ICMT 2013. LNCS, vol. 7909, pp. 76–91. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38883-5_10

    Chapter  Google Scholar 

  24. Lano, K., Kolahdouz Rahimi, S.: Model-transformation design patterns. IEEE Trans. Softw. Eng. 40(12), 1224–1259 (2014)

    Article  Google Scholar 

  25. Lúcio, L., Amrani, M., Dingel, J., Lambers, L., Salay, R., Selim, G.M.K., Syriani, E., Wimmer, M.: Model transformation intents and their properties. Softw. Syst. Model. 15(3), 647–684 (2016)

    Article  Google Scholar 

  26. Mens, T., van Gorp, P.: A taxonomy of model transformation. Electron. Notes Theor. Comput. Sci. 152, 125–142 (2006)

    Article  Google Scholar 

  27. Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification. No. formal/15-02-01 (2015)

    Google Scholar 

  28. Paige, R.F., Matragkas, N.D., Rose, L.M.: Evolving models in model-driven engineering: State-of-the-art and future challenges. J. Syst. Softw. 111, 272–280 (2016)

    Article  Google Scholar 

  29. Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C., Poulding, S.M.: Epsilon Flock: a model migration language. Softw. Syst. Model. 13(2), 735–755 (2014)

    Article  Google Scholar 

  30. Stahl, T., Völter, M.: Model-driven software development: technology, engineering, management. Wiley (2013)

    Google Scholar 

  31. Tisi, M., Cabot, J., Jouault, F.: Improving higher-order transformations support in ATL. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 215–229. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13688-7_15

    Chapter  Google Scholar 

  32. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-order model transformations. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 18–33. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02674-4_3

    Chapter  Google Scholar 

  33. Wagelaar, D., van der Straeten, R., Deridder, D.: Module superimposition: a composition technique for rule-based model transformation languages. Softw. Syst. Model. 9(3), 285–309 (2009)

    Article  Google Scholar 

  34. Willink, E.D.: Modeling the OCL standard library. Electronic Communications of the EASST 44 (2011)

    Google Scholar 

Download references

Acknowledgments

The authors thank Marie Christin Platenius and Anthony Anjorin for helpful comments on earlier versions of the paper, and Mario Treiber for assisting in our validation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Gerking .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gerking, C., Schubert, D., Budde, I. (2017). Reducing the Verbosity of Imperative Model Refinements by Using General-Purpose Language Facilities. In: Guerra, E., van den Brand, M. (eds) Theory and Practice of Model Transformation. ICMT 2017. Lecture Notes in Computer Science(), vol 10374. Springer, Cham. https://doi.org/10.1007/978-3-319-61473-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61473-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61472-4

  • Online ISBN: 978-3-319-61473-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics