Skolem Function Continuation for Quantified Boolean Formulas

  • Katalin Fazekas
  • Marijn J. H. Heule
  • Martina Seidl
  • Armin Biere
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10375)

Abstract

Modern solvers for quantified Boolean formulas (QBF) not only decide the satisfiability of a formula, but also return a set of Skolem functions representing a model for a true QBF. Unfortunately, in combination with a preprocessor this ability is lost for many preprocessing techniques. A preprocessor rewrites the input formula to an equi-satisfiable formula which is often easier to solve than the original formula. Then the Skolem functions returned by the solver represent a solution for the preprocessed formula, but not necessarily for the original encoding.

Our solution to this problem is to combine Skolem functions obtained from a \(\mathsf {QRAT}\) trace as produced by the widely-used preprocessor Bloqqer with Skolem functions for the preprocessed formula. This approach is agnostic of the concrete rewritings performed by the preprocessor and allows the combination of Bloqqer with any Skolem function producing solver, hence realizing a smooth integration into the solving tool chain.

Notes

Acknowledgements

We would like to thank Luca Pulina for providing us with the list of satisfiable instances of the QBF Eval 2016.

References

  1. 1.
    Kleine Büning, H., Bubeck, U.: Theory of quantified Boolean formulas. In: Handbook of Satisfiability, pp. 735–760. IOS Press (2009)Google Scholar
  2. 2.
    Benedetti, M., Mangassarian, H.: QBF-based formal verification: experience and perspectives. JSAT 5(1–4), 133–191 (2008)MathSciNetMATHGoogle Scholar
  3. 3.
    Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 1–20. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54013-4_1 CrossRefGoogle Scholar
  4. 4.
    Egly, U., Kronegger, M., Lonsing, F., Pfandler, A.: Conformant planning as a case study of incremental QBF solving. In: Aranda-Corral, G.A., Calmet, J., Martín-Mateos, F.J. (eds.) AISC 2014. LNCS, vol. 8884, pp. 120–131. Springer, Cham (2014). doi:10.1007/978-3-319-13770-4_11 Google Scholar
  5. 5.
    Balabanov, V., Jiang, J.R., Scholl, C.: Skolem functions computation for CEGAR based QBF solvers. In: QBF (2015)Google Scholar
  6. 6.
    Rabe, M.N., Seshia, S.A.: Incremental determinization. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 375–392. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2_23 Google Scholar
  7. 7.
    Balabanov, V., Jiang, J.R.: Unified QBF certification and its applications. Form. Methods Syst. Des. 41(1), 45–65 (2012)CrossRefMATHGoogle Scholar
  8. 8.
    Benedetti, M.: Extracting certificates from quantified Boolean formulas. In: IJCAI, pp. 47–53. Professional Book Center (2005)Google Scholar
  9. 9.
    Narizzano, M., Peschiera, C., Pulina, L., Tacchella, A.: Evaluating and certifying QBFs: a comparison of state-of-the-art tools. AI Commun. 22(4), 191–210 (2009)MathSciNetMATHGoogle Scholar
  10. 10.
    Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based certificate extraction for QBF. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 430–435. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31612-8_33 CrossRefGoogle Scholar
  11. 11.
    Jussila, T., Biere, A., Sinz, C., Kröning, D., Wintersteiger, C.M.: A first step towards a unified proof checker for QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 201–214. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72788-0_21 CrossRefGoogle Scholar
  12. 12.
    Heule, M.J.H., Seidl, M., Biere, A.: Solution validation and extraction for QBF preprocessing. J. Autom. Reason. 58(1), 97–125 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Goultiaeva, A., Van Gelder, A., Bacchus, F.: A uniform approach for generating proofs and strategies for both true and false QBF formulas. In: IJCAI/AAAI, pp. 546–553 (2011)Google Scholar
  14. 14.
    Van Gelder, A.: Certificate extraction from variable-elimination QBF preprocessors. In: QBF, pp. 35–39 (2013)Google Scholar
  15. 15.
    Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput. 117(1), 12–18 (1995)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified Boolean formulas. In: Handbook of Satisfiability, pp. 761–780. IOS Press (2009)Google Scholar
  17. 17.
    Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: FMCAD, pp. 136–143 (2015)Google Scholar
  18. 18.
    Lonsing, F., Seidl, M., Van Gelder, A.: The QBF gallery: behind the scenes. Artif. Intell. 237, 92–114 (2016)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Marin, P., Narizzano, M., Pulina, L., Tacchella, A., Giunchiglia, E.: Twelve years of QBF evaluations: QSAT is PSPACE-hard and it shows. Fundam. Inform. 149(1–2), 133–158 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Janota, M., Grigore, R., Marques-Silva, J.: On QBF proofs and preprocessing. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 473–489. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45221-5_32 CrossRefGoogle Scholar
  21. 21.
    Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 101–115. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6_10 CrossRefGoogle Scholar
  22. 22.
    Lonsing, F., Egly, U.: DepQBF: an incremental QBF solver based on clause groups. CoRR abs/1502.02484 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Katalin Fazekas
    • 1
  • Marijn J. H. Heule
    • 2
  • Martina Seidl
    • 1
  • Armin Biere
    • 1
  1. 1.Johannes Kepler UniversityLinzAustria
  2. 2.The University of Texas at AustinAustinUSA

Personalised recommendations