Skip to main content

Sensing and Data Acquisition

  • Chapter
  • First Online:
Exploring Occupant Behavior in Buildings

Abstract

Occupant sensing and data acquisition are essential elements for occupant behavior research. A wide range of different types of sensors has been implemented to collect rich information on occupants and their interactions with the built environment, such as presence, actions, power consumption, etc. This information establishes a foundation to study the physiological, psychological, and social aspects of occupant behavior. This chapter summarizes existing occupancy and occupant behavior sensing and data acquisition technologies in terms of field applications, and develops nine performance metrics for their evaluation. The reviewed technologies focus on both occupants’ presence and interactions with the built environment, and are grouped into six major categories: image-based, threshold and mechanical, motion sensing, radio-based, human-in-the-loop, and consumption sensing. This chapter provides an overview and discussion of different current state-of-the-art and future sensing technologies for researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal Y, Balaji B, Dutta S, Gupta RK, Weng T (2011) Duty-cycling buildings aggressively: the next frontier in HVAC control. Proceedings of the 10th international conference on information processing in sensor networks (IPSN). ACM/IEEE, Chicago, pp 246–257

    Google Scholar 

  • Agarwal Y, Balaji B, Gupta R, Lyles J, Wei M, Weng T (2010) Occupancy-driven energy management for smart building automation. Proceedings of the 2nd ACM workshop on embedded sensing systems for energy-efficiency in building (BuildSys’10), Zurich, November 2010. ACM, New York, pp 1–6

    Google Scholar 

  • Aiello GR, Rogerson GD (2003) Ultra-wideband wireless systems. IEEE Microw Mag 4:36–47. doi:10.1109/MMW.2003.1201597

    Article  Google Scholar 

  • Brackney LJ, Florita AR, Swindler AC, Polese LG, Brunemann GA (2012) Design and performance of an image processing occupancy sensor. Proceedings of the second international conference on building energy and environment, Boulder, August 2012. COBEE, Boulder, pp 987–994

    Google Scholar 

  • Caucheteux A, Es Sabar A, Boucher V (2013) Occupancy measurement in building: a literature review, application on an energy efficiency research demonstrated building. Int J Metrol Qual Eng 4:135–144. doi:10.1051/ijmqe/2013044

    Article  Google Scholar 

  • Chiesa M, Genz R, Heubler F, Mingo K, Noessel C, Sopieva N, Slocombe D, Tester J (2002) RFID: a week long survey on the technology and its potential. In: Harnessing Technology Project, Interaction Design Institute Ivrea. http://www.erasme.org/IMG/RFID_research.pdf. Accessed 15 Sept 2016

  • Deak G, Curran K, Condell J (2012) A survey of active and passive indoor localisation systems. Comput Commun 35:1939–1954. doi:10.1016/j.comcom.2012.06.004

    Article  Google Scholar 

  • Department of Energy (2015) DOE peer review for Building Technologies Office (BTO) sensors and controls technologies and emerging technologies R&D program. https://energy.gov/sites/prod/files/2015/05/f22/2015%20BTOpr%20Overview_Sensors%20and%20Controls.pdf

  • Ding D, Cooper RA, Pasquina PF, Fici-Pasquina L (2011) Sensor technology for smart homes. Maturitas 69:131–136. doi:10.1016/j.maturitas.2011.03.016

    Article  Google Scholar 

  • Dong B, Lam KP (2011) Building energy and comfort management through occupant behaviour pattern detection based on a large-scale environmental sensor network. J Build Perform Simul 4:359–369. doi:10.1080/19401493.2011.577810

    Article  Google Scholar 

  • D’Oca S, Fabi V, Corgnati SP, Andersen RK (2014) Effect of thermostat and window opening occupant behavior models on energy use in homes. Build Simul 7:683–694. doi:10.1007/s12273-014-0191-6

    Article  Google Scholar 

  • Dong B, Li Z, Mcfadden G (2015) An investigation on energy-related occupancy behavior for low-income residential buildings. Sci Techno Built Environ 21(6):892–901

    Article  Google Scholar 

  • Duarte C, Van Den Wymelenberg K, Rieger C (2013) Revealing occupancy patterns in an office building through the use of occupancy sensor data. Energy Build 67:587–595. doi:10.1016/j.enbuild.2013.08.062

    Article  Google Scholar 

  • Erickson VL, Lin Y, Kamthe A, Brahme R, Surana A, Cerpa AE, Sohn MD, Narayanan S (2009) Energy efficient building environment control strategies using real-time occupancy measurements. Proceedings of the 1st ACM workshop on embedded sensing systems for energy-efficiency in buildings (BuildSys 2009) in conjunction with ACM SenSys 2009, Berkeley, November 2009. ACM, New York, pp 19–24

    Google Scholar 

  • Erickson VL, Carreira-Perpiñán MÁ, Cerpa AE (2014) Occupancy modeling and prediction for building energy management. ACM Trans Sens Netw. doi:10.1145/2594771

    Google Scholar 

  • Faragher R, Harle R (2014) An analysis of the accuracy of bluetooth low energy for indoor positioning applications. Proceedings of the 27th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS + 2014), Tampa, September 2014. ION publications, Folsom, pp 201–210

    Google Scholar 

  • Gade R, Jørgensen A, Moeslund TB (2012) Occupancy analysis of sports arenas using thermal imaging. Proceedings of the international conference on computer vision theory and applications, Rome, February 2012. SCITEPRESS digital library, Setùbal, pp 277–283

    Google Scholar 

  • Gade R, Jørgensen A, Moeslund TB (2013) Long-term occupancy analysis using graph-based optimisation in thermal imagery. Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR’13), Portland, June 2013. IEEE Computer Society, Washington, pp 3698–3705

    Chapter  Google Scholar 

  • Ghai SK, Thanayankizil LV, Seetharam DP, Chakraborty D (2012) Occupancy detection in commercial buildings using opportunistic context sources. IEEE international conference on pervasive computing and communications Workshops (PERCOM Workshops), Lugano, March 2012. IEEE, Washington, pp 463–466

    Chapter  Google Scholar 

  • Gilani S, O’Brien W (2016) Review of current methods, opportunities, and challenges for in-situ monitoring to support occupant modelling in office spaces. J Build Perform Simul 0:1–27. doi:10.1080/19401493.2016.1255258

  • Gilani S, O’Brien W, Gunay HB, Carrizo JS (2016) Use of dynamic occupant behavior models in the building design and code compliance processes. Energy Build 117:260–271. doi:10.1016/j.enbuild.2015.10.044

    Article  Google Scholar 

  • Gomez C, Oller J, Paradells J (2012) Overview and evaluation of bluetooth low energy: an emerging low-power wireless technology. Sensors 12:11734–11753. doi:10.3390/s120911734

    Article  Google Scholar 

  • Goyal S, Ingley HA, Barooah P (2013) Occupancy-based zone-climate control for energy-efficient buildings: complexity versus performance. Appl Energy 106:209–221. doi:10.1016/j.apenergy.2013.01.039

    Article  Google Scholar 

  • Gunay HB, Fuller AF, O’Brien W, Beausoleil-Morrison I (2016) Detecting occupants’ presence in office spaces: a case study. In: eSim 2016, McMaster University, Hamilton, 3–6 May 2016

    Google Scholar 

  • Haldi F, Robinson D (2010) Adaptive actions on shading devices in response to local visual stimuli. J Build Perform Simul 3:135–153. doi:10.1080/19401490903580759

    Article  Google Scholar 

  • Hay S, Rice A (2009) The case for apportionment. Proceedings fo the first ACM workshop on embedded sensing systems for energy-efficiency in buildings (BuildSys’09), Berkeley, November 2009. ACM, New York, pp 13–18

    Google Scholar 

  • Hnat TW, Griffiths E, Dawson R, Whitehouse K (2012) Doorjamb: unobtrusive room-level tracking of people in homes using doorway sensors. Proceedings of the 10th ACM conference on embedded network sensor systems (SenSys’12), Toronto, November 2012. ACM, New York, pp 309–322

    Google Scholar 

  • Hutchins J, Ihler A, Smyth P (2007) Modeling count data from multiple sensors: a building occupancy model. 2nd IEEE international workshop on computational advances in multi-sensor adaptive processing (CAMPSAP), Virgin Islands, December 2007. IEEE, Washington, pp 241–244

    Chapter  Google Scholar 

  • Inkarojirit V (2005) Balancing comfort: occupants’ control of window blinds in private offices. Dissertation, University of California

    Google Scholar 

  • Jenkins CJ (2007) The weakly identifying system for doorway monitoring. Dissertation, Duke University

    Google Scholar 

  • Kamthe A, Jiang L, Dudys M, Cerpa A (2009) SCOPES: Smart cameras object position estimation system. Proceedings of the 6th European conference on wireless sensor networks (EWSN’09), Cork, February 2009. Springer, Berlin, pp 279–295

    Google Scholar 

  • Kapsis K, O’Brien W, Athienitis AK (2013) Time-lapse photography and image recognition to monitor occupant-controlled shade patterns: analysis and results. 13th conference of international building performance simulation association, Chambèry, August 2013. IBPSA, France, pp 3712–3719

    Google Scholar 

  • Khoury HM, Kamat VR (2009) Evaluation of position tracking technologies for user localization in indoor construction environments. Autom Constr 18:444–457. doi:10.1016/j.autcon.2008.10.011

    Article  Google Scholar 

  • Kjærgaard MB (2007) A taxonomy for radio location fingerprinting. Third international symposium on location and context awareness (LoCA), Oberpfaffenhofen, September 2007. Springer, Berlin, pp 139–156

    Google Scholar 

  • Kjærgaard MB, Johansen A, Sangogboye F, Holmegaard E (2016) Occure: an occupancy reasoning platform for occupancy-driven applications. 19th International ACM SIGSOFT symposium on component-based software engineering (CBSE), Venice, April 2016. IEEE, Washington, pp 39–48

    Chapter  Google Scholar 

  • Kleiminger W, Beckel C, Staake T, Santini S (2013) Occupancy detection from electricity consumption data. Proceedings of the 5th ACM workshop on embedded sensing systems for energy-efficiency in buildings, Rome, November 2013. ACM Publications, New York, pp 1–8

    Google Scholar 

  • Konis K (2012) A method for measurement of transient discomfort glare conditions and occupant shade control behavior in the field using low-cost CCD cameras. In: American Solar Energy Society (ASES) National Solar Conference, Denver, 13–17 May 2012

    Google Scholar 

  • Koyuncu H, Yang SH (2010) A survey of indoor positioning and object locating systems. Int J Comput Sci Netw Secur 10:121–128

    Google Scholar 

  • Kumar S, Marks TK, Jones M (2014) Improving person tracking using an inexpensive thermal infrared sensor. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW’14), Columbus, June 2014. IEEE computer society Washington, pp 217–224

    Google Scholar 

  • Lam KP, Höynck M, Dong B, Andrews B, Chiou Y-S, Zhang R, Benitez D, Choi J (2009) Occupancy detection through an extensive environmental sensor network in an open-plan office building. Proceedings of building simulation (IBPSA’2009), Glasgow, July 2009. IBPSA, England, pp 1452–1459

    Google Scholar 

  • LaMarca A, de Lara E (2008) Location systems: an introduction to the technology behind location awareness. Synth Lect Mob pervasive Comput 3:1–122. doi:10.2200/S00115ED1V01Y200804MPC004

    Article  Google Scholar 

  • Li Z, Dong B (2017) A new modeling approach for short-term predictions of occupancy presence in residential buildings. Building and Environment 121:277–290

    Google Scholar 

  • Li N, Calis G, Becerik-Gerber B (2012) Measuring and monitoring occupancy with an RFID based system for demand-driven HVAC operations. Autom Constr 24:89–99. doi:10.1016/j.autcon.2012.02.013

    Article  Google Scholar 

  • Martani C, Lee D, Robinson P, Britter R, Ratti C (2012) ENERNET: Studying the dynamic relationship between building occupancy and energy consumption. Energy Build 47:584–591. doi:10.1016/j.enbuild.2011.12.037

    Article  Google Scholar 

  • Meerbeek B, Gritti T, Aarts M, Van Loenen E, Aarts E (2014) Building automation and perceived control: a field study on motorized exterior blinds in Dutch offices. Build Environ 79:66–77. doi:10.1016/j.buildenv.2014.04.023

    Article  Google Scholar 

  • Meyn S, Surana A, Lin Y, Oggianu SM, Narayanan S, Frewen TA (2009) A sensor-utility-network method for estimation of occupancy in buildings. Proceedings of the 48th IEEE conference on decision and controll. doi:10.1109/CDC.2009.5400442

  • Misra P, Enge P (2011) Global positioning system: signals, measurements, and performance. Ganga-Jamuna Press, Lincoln

    Google Scholar 

  • Narayana S, Prasad RV, Rao VS, Prabhakar TV, Kowshik SS, Iyer MS (2015) PIR sensors: characterization and novel localization technique. Proceedings of the 14th international conference on information processing in sensor networks (IPSN’15), Seattle, April 2015. ACM, New York, pp 142–153

    Google Scholar 

  • O’Brien W, Gunay HB (2015) Mitigating office performance uncertainty of occupant use of window blinds and lighting using robust design. Build Simul 8:621–636. doi:10.1007/s12273-015-0239-2

    Article  Google Scholar 

  • Proulx G, Reid IMA (2006) Occupant behavior and evacuation during the Chicago cook county administration building fire. J Fire Prot Eng 16:283–309. doi:10.1177/1042391506065951

    Article  Google Scholar 

  • Ranjan J, Yao Y, Whitehouse K (2013) An RF doormat for tracking people’s room locations. Proceedings of the 2013 ACM international joint conference on pervasive and ubiquitous computing, Zurick, September 2013. ACM, New York, pp 797–800

    Chapter  Google Scholar 

  • Ranjan J, Griffiths E, Whitehouse K (2014) Discerning electrical and water usage by individuals in homes. In: Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings (BuildSys’14). Memphis, November 2014. ACM, New York, pp 20–29

    Google Scholar 

  • Rea MS (1984) Window blind occlusion: a pilot study. Build Environ 19:133–137. doi:10.1016/0360-1323(84)90038-6

    Article  Google Scholar 

  • Reinhart CF (2001) Daylight availability and manual lighting control in office buildings-simulation studies and analysis of measurements. Dissertation, University of Karlsruhe

    Google Scholar 

  • Ruiz-Ruiz AJ, Blunck H, Prentow TS, Stisen A, Kjaergaard MB (2014) Analysis methods for extracting knowledge from large-scale WiFi monitoring to inform building facility planning. In: IEEE International Conference on Pervasive Computing and Communications (PerCom). doi:10.1109/PerCom.2014.6813953

  • Sabek I, Youssef M, Vasilakos AV (2015) ACE: an accurate and efficient multi-entity device-free WLAN localization system. IEEE Trans Mob Comput 14:261–273. doi:10.1109/TMC.2014.2320265

    Article  Google Scholar 

  • Seer S, Brändle N, Ratti C (2014) Kinects and human kinetics: a new approach for studying pedestrian behavior. Transp Res Part C Emerg Technol 48:212–228. doi:10.1016/j.trc.2014.08.012

    Article  Google Scholar 

  • Sutter Y, Dumortier D, Fontoynont M (2006) The use of shading systems in VDU task offices: a pilot study. Energy Build 38:780–789. doi:10.1016/j.enbuild.2006.03.010

    Article  Google Scholar 

  • Wang D, Fesenmaier DR (2013) Transforming the travel experience: the use of smartphones for travel. In: Cantoni L, Xiang Z (eds) Information and Communication Technologies in Tourism 2013. Springer, Berlin, pp 58–69

    Chapter  Google Scholar 

  • Yavari E, Jou H, Lubecke V, Boric-Lubecke O (2013) Doppler radar sensor for occupancy monitoring. IEEE topical conference on wireless sensors and sensors networks (WiSNet), Renaissance, January 2013. IEEE, Washington, pp 216–218

    Google Scholar 

  • Zhao J, Lasternas B, Lam KP, Yun R, Loftness V (2014) Occupant behavior and schedule modeling for building energy simulation through office appliance power consumption data mining. Energy Build 82:341–355. doi:10.1016/j.enbuild.2014.07.033

    Article  Google Scholar 

  • Zhao J, Lam KP, Ydstie BE, Karaguzel OT (2015) EnergyPlus model-based predictive control within design–build–operate energy information modelling infrastructure. J Build Perform Simul 8:121–134. doi:10.1080/19401493.2014.891656

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dong, B. et al. (2018). Sensing and Data Acquisition. In: Wagner, A., O’Brien, W., Dong, B. (eds) Exploring Occupant Behavior in Buildings. Springer, Cham. https://doi.org/10.1007/978-3-319-61464-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61464-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61463-2

  • Online ISBN: 978-3-319-61464-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics