Abstract
Vehicle speed is an important factor influencing highway traffic safety. Radars are applied to control the speed of vehicles, but the drivers often decelerate when approaching radar, and then accelerate after passing by. We address automatic recognition of speed change from audio data, based on recordings taken in controlled conditions. Data description and classification experiments illustrate both changing speed and maintaining constant speed. This is a starting point to investigate what percentage of drivers actually maintain constant speed, or slow down only to speed up immediately afterwards. Automatic classification and building an appropriate database can help improving traffic safety.
Keywords
- Intelligent transport system
- Road traffic safety
- Audio signal analysis
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Adobe. http://www.adobe.com/#
Ahn, I.-S., Bae, S.-G., Bae, M.-J.: Study on fault diagnosis of vehicles using the sound signal in audio signal processing. J. Eng. Technol. 3, 89–95 (2015)
Berdnikova, J., Ruuben, T., Kozevnikov, V., Astapov, S.: Acoustic noise pattern detection and identification method in doppler system. Elektron. Elektrotech. 18(8), 65–68 (2012)
Blaszczynski, J., Stefanowski, J.: Neighbourhood sampling in bagging for imbalanced data. Neurocomputing 150 A, 184–203 (2015)
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
Duarte, M.F., Hu, Y.H.: Vehicle classification in distributed sensor networks. J. Parallel Distrib. Comput. 64, 826–838 (2004)
Erb, S.: Classification of vehicles based on acoustic features. Thesis, Graz University of Technology (2007)
EuroRAP. http://www.eurorap.pl/index.php
Hao, Y., Shokoohi-Yekta, M., Papageorgiou, G., Keogh, E.: Parameter-free audio motif discovery in large data archives. In: IEEE 13th International Conference on Data Mining, pp. 261–270 (2013)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer Science+Business Media, LLC, Heidelberg (2009)
IRCAM. http://recherche.ircam.fr/anasyn/peeters/ARTICLES/Peeters_2003_cuidadoaudiofeatures.pdf
Moving Picture Experts Group. http://mpeg.chiariglione.org/standards/mpeg-7
Niewiadomy, D., Pelikant, A.: Implementation of MFCC vector generation in classification context. J. Appl. Comp. Sci. 16(2), 55–65 (2008)
Package ‘e1071’. https://cran.r-project.org/web/packages/e1071/e1071.pdf
Package ‘h2o’. http://cran.r-project.org/web/packages/h2o/h2o.pdf
Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1), 1–39 (2010)
Siegel, J., Kumar, S., Ehrenberg, I., Sarma, S.: Engine misfire detection with pervasive mobile audio. In: Berendt, B., Bringmann, B., Fromont, É., Garriga, G., Miettinen, P., Tatti, N., Tresp, V. (eds.) ECML PKDD 2016, Part III. LNCS (LNAI), vol. 9853, pp. 226–241. Springer, Cham (2016). doi:10.1007/978-3-319-46131-1_26
The R Foundation. http://www.R-project.org
Wieczorkowska, A., Kubera, E., Słowik, T., Skrzypiec, K.: Spectral features for audio based vehicle identification. In: Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2015. LNCS (LNAI), vol. 9607, pp. 163–178. Springer, Cham (2016). doi:10.1007/978-3-319-39315-5_11
World Health Organization. http://www.who.int/mediacentre/factsheets/fs358/en/
Yeh, C.-C.M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H.A., Silva, D.F., Mueen, A., Keogh, E.: Matrix profile I: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets. In: IEEE International Conference on Data Mining (2016)
Acknowledgement
This work was partially supported by the Research Center of PJAIT, supported by the Ministry of Science and Higher Education in Poland.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kubera, E., Wieczorkowska, A., Słowik, T., Kuranc, A., Skrzypiec, K. (2017). Audio-Based Speed Change Classification for Vehicles. In: Appice, A., Ceci, M., Loglisci, C., Masciari, E., Raś, Z. (eds) New Frontiers in Mining Complex Patterns. NFMCP 2016. Lecture Notes in Computer Science(), vol 10312. Springer, Cham. https://doi.org/10.1007/978-3-319-61461-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-61461-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-61460-1
Online ISBN: 978-3-319-61461-8
eBook Packages: Computer ScienceComputer Science (R0)