Skip to main content

Audio-Based Speed Change Classification for Vehicles

Part of the Lecture Notes in Computer Science book series (LNAI,volume 10312)


Vehicle speed is an important factor influencing highway traffic safety. Radars are applied to control the speed of vehicles, but the drivers often decelerate when approaching radar, and then accelerate after passing by. We address automatic recognition of speed change from audio data, based on recordings taken in controlled conditions. Data description and classification experiments illustrate both changing speed and maintaining constant speed. This is a starting point to investigate what percentage of drivers actually maintain constant speed, or slow down only to speed up immediately afterwards. Automatic classification and building an appropriate database can help improving traffic safety.


  • Intelligent transport system
  • Road traffic safety
  • Audio signal analysis

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Adobe.

  2. Ahn, I.-S., Bae, S.-G., Bae, M.-J.: Study on fault diagnosis of vehicles using the sound signal in audio signal processing. J. Eng. Technol. 3, 89–95 (2015)

    Google Scholar 

  3. Berdnikova, J., Ruuben, T., Kozevnikov, V., Astapov, S.: Acoustic noise pattern detection and identification method in doppler system. Elektron. Elektrotech. 18(8), 65–68 (2012)

    Google Scholar 

  4. Blaszczynski, J., Stefanowski, J.: Neighbourhood sampling in bagging for imbalanced data. Neurocomputing 150 A, 184–203 (2015)

    Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    CrossRef  MATH  Google Scholar 

  6. Duarte, M.F., Hu, Y.H.: Vehicle classification in distributed sensor networks. J. Parallel Distrib. Comput. 64, 826–838 (2004)

    CrossRef  Google Scholar 

  7. Erb, S.: Classification of vehicles based on acoustic features. Thesis, Graz University of Technology (2007)

    Google Scholar 

  8. EuroRAP.

  9. Hao, Y., Shokoohi-Yekta, M., Papageorgiou, G., Keogh, E.: Parameter-free audio motif discovery in large data archives. In: IEEE 13th International Conference on Data Mining, pp. 261–270 (2013)

    Google Scholar 

  10. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer Science+Business Media, LLC, Heidelberg (2009)

    MATH  Google Scholar 

  11. IRCAM.

  12. Moving Picture Experts Group.

  13. Niewiadomy, D., Pelikant, A.: Implementation of MFCC vector generation in classification context. J. Appl. Comp. Sci. 16(2), 55–65 (2008)

    Google Scholar 

  14. Package ‘e1071’.

  15. Package ‘h2o’.

  16. Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1), 1–39 (2010)

    CrossRef  MathSciNet  Google Scholar 

  17. Siegel, J., Kumar, S., Ehrenberg, I., Sarma, S.: Engine misfire detection with pervasive mobile audio. In: Berendt, B., Bringmann, B., Fromont, É., Garriga, G., Miettinen, P., Tatti, N., Tresp, V. (eds.) ECML PKDD 2016, Part III. LNCS (LNAI), vol. 9853, pp. 226–241. Springer, Cham (2016). doi:10.1007/978-3-319-46131-1_26

    CrossRef  Google Scholar 

  18. The R Foundation.

  19. Wieczorkowska, A., Kubera, E., Słowik, T., Skrzypiec, K.: Spectral features for audio based vehicle identification. In: Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2015. LNCS (LNAI), vol. 9607, pp. 163–178. Springer, Cham (2016). doi:10.1007/978-3-319-39315-5_11

    Google Scholar 

  20. World Health Organization.

  21. Yeh, C.-C.M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H.A., Silva, D.F., Mueen, A., Keogh, E.: Matrix profile I: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets. In: IEEE International Conference on Data Mining (2016)

    Google Scholar 

Download references


This work was partially supported by the Research Center of PJAIT, supported by the Ministry of Science and Higher Education in Poland.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alicja Wieczorkowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kubera, E., Wieczorkowska, A., Słowik, T., Kuranc, A., Skrzypiec, K. (2017). Audio-Based Speed Change Classification for Vehicles. In: Appice, A., Ceci, M., Loglisci, C., Masciari, E., Raś, Z. (eds) New Frontiers in Mining Complex Patterns. NFMCP 2016. Lecture Notes in Computer Science(), vol 10312. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61460-1

  • Online ISBN: 978-3-319-61461-8

  • eBook Packages: Computer ScienceComputer Science (R0)