Skip to main content

Immunodeficiency in Bronchiectasis

Abstract

Immune deficiency is the third most commonly identified cause for bronchiectasis, after cystic fibrosis and postinfectious bronchiectasis, in children and adults. In this chapter we describe primary and secondary immune deficiencies that are commonly complicated by bronchiectasis including specific investigations required to make these diagnoses. We focus on antibody deficiency which is the most common immune deficiency identified in bronchiectasis. Key investigations that should be performed on all idiopathic bronchiectatic patients are outlined. Finally, we describe the management of bronchiectasis in immune-deficient patients including recommendations on immunisation, antibiotic prophylaxis, immunoglobulin replacement therapy, joint respiratory-immunology care clinics and long-term monitoring.

This is a preview of subscription content, access via your institution.

References

  1. Guan WJ, Gao YH, Xu G, et al. Aetiology of bronchiectasis in Guangzhou, southern China. Respirology. 2015;20(5):739–48.

    CrossRef  PubMed  Google Scholar 

  2. Qi Q, Li T, Zhang Y, et al. Aetiology and clinical characteristics of patients with bronchiectasis in a Chinese Han population: a prospective study. Respirology. 2015;20:917–24.

    CrossRef  PubMed  Google Scholar 

  3. Maarschalk-Ellerbroek LJ, de Jong PA, et al. CT screening for pulmonary pathology in common variable immunodeficiency disorders and the correlation with clinical and immunological parameters. J Clin Immunol. 2014;34:642–52.

    CrossRef  CAS  PubMed  Google Scholar 

  4. Pasteur MC, Helliwell SM, Houghton SJ, et al. An investigation into causative factors in patients with bronchiectasis. Am J Respir Crit Care Med. 2000;162:1277–84.

    CrossRef  CAS  PubMed  Google Scholar 

  5. Stead A, Douglas JG, Broadfoot CJ, et al. Humoral immunity and bronchiectasis. Clin Exp Immunol. 2002;130:325–30.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shoemark A, Ozerovitch L, Wilson R. Aetiology in adult patients with bronchiectasis. Respir Med. 2007;101:1163–70.

    CrossRef  CAS  PubMed  Google Scholar 

  7. Lonni S, Chalmers JD, Goeminne PC, et al. Etiology of non-cystic fibrosis bronchiectasis in adults and its correlation to disease severity. Ann Am Thorac Soc. 2015;12(12):1764–70.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Nikolaizik WH, Warner JO. Aetiology of chronic suppurative lung disease. Arch Dis Child. 1994;70:141–2.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li AM, Sonnappa S, Lex C, et al. Non-CF bronchiectasis: does knowing the aetiology lead to changes in management? Eur Respir J. 2005;26:8–14.

    CrossRef  PubMed  Google Scholar 

  10. Brower KS, Del Vecchio MT, Aronoff SC. The etiology of non-CF bronchiectasis in childhood: a systematic review of 989 subjects. BMC Paediatr. 2014;14:299.

    CrossRef  Google Scholar 

  11. Eastham KM, Fall AJ, Mitchell L, Spencer DA. The need to redefine non-cystic fibrosis bronchiectasis in childhood. Thorax. 2004;59:324–7.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gao YH, Guan WJ, Liu SX, et al. Aetiology of bronchiectasis in adults: a systematic literature review. Respirology. 2016;21(8):1376–83.

    CrossRef  PubMed  Google Scholar 

  13. Pasteur MC, Bilton D, Hill AT. 2010 – British Thoracic Society guideline for non-CF bronchiectasis. Thorax. 2010;65(S1):i1–i58.

    CrossRef  PubMed  Google Scholar 

  14. de Vries E, Alvarez Cardona A, Abdul Latiff AH, et al. Patient-centred screening for primary immunodeficiency, a multi-stage diagnostic protocol for non-immunologists: 2011 update. Clin Exp Immunol. 2012;167(1):108–19.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Edgar JDM, Buckland M, Guzman D, et al. The United Kingdom primary immune deficiency (UKPID) registry: report of the first 4 years’ activity 2008-2012. Clin Exp Immunol. 2014;175(1):68–78.

    CrossRef  CAS  PubMed  Google Scholar 

  16. Hurst JR, Workman S, Garcha DS, et al. Activity, severity and impact of respiratory disease in primary antibody deficiency syndromes. J Clin Immunol. 2014;34(1):68–75.

    CrossRef  CAS  PubMed  Google Scholar 

  17. Kelesidis T, Yang O. Good’s syndrome remains a mystery after 55 years: A systematic review of the scientific evidence. Clin Immunol. 2010;135:347–63.

    CrossRef  CAS  PubMed  Google Scholar 

  18. ESID registry. 2016. http://esid.org/Working-Parties/Registry.

  19. Murphy K, Weaver C. Janeway’s immunobiology. 9th ed. New York: Garland Science Publishing; 2016.

    Google Scholar 

  20. ESID registry diagnostic criteria. 2014. http://esid.org/Working-Parties/Registry/Diagnostic-criteria.

  21. Al-Herz W, Bousfiha A, Casanova JL, et al. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front Immunol. 2014;22(5):162.

    Google Scholar 

  22. Thickett KM, Kumararatne DS, Banerjee AK, et al. Common variable immune deficiency: respiratory manifestations, pulmonary function and high-resolution CT scan findings. Q J Med. 2002;95:655–62.

    CrossRef  CAS  Google Scholar 

  23. Cunningham-Rundles C. Clinical and immunologic analyses of 103 patients with common variable immunodeficiency. J Clin Immunol. 1989;9(1):22–33.

    CrossRef  CAS  PubMed  Google Scholar 

  24. Gathmann B, Mahlaoui N, CEREDIH, et al. Clinical picture and treatment of 2212 patients with common variable immunodeficiency. J Allergy Clin Immunol. 2014;134(1):116–26.

    CrossRef  PubMed  Google Scholar 

  25. Chapel H, Lucas M, Lee M, et al. Common variable immunodeficiency disorders: division into distinct clinical phenotypes. Blood. 2008;112:277–86.

    CrossRef  CAS  PubMed  Google Scholar 

  26. Wehr C, Kivioja T, Schmitt C, et al. The EUROclass trial: defining subgroups in common variable immunodeficiency. Blood. 2008;111(1):77–85.

    CrossRef  CAS  PubMed  Google Scholar 

  27. Chapel H, Cunningham-Rundles C. Update in understanding common variable immunodeficiency disorders (CVIDs) and the management of patients with these conditions. Br J Haematol. 2009;145(6):709–27.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mouillot G, Carmagnat M, Gérard L, et al. B-cell and T-cell phenotypes in CVID patients correlate with the clinical phenoptype of the disease. J Clin Immunol. 2010;30(5):746–55.

    CrossRef  PubMed  Google Scholar 

  29. Malphettes M, Gérard L, Carmagnat M, et al. Late-onset combined immune deficiency: a subset of common variable immunodeficiency with severe T cell defect. Clin Infect Dis. 2009;49(9):1329–38.

    CrossRef  CAS  PubMed  Google Scholar 

  30. Yong PFK, Thaventhiran JED, Grmbacher B. “A rose is a rose is a rose,” but CVID is not CVID: common variable immune deficiency (CVID). What do we know in 2011? Adv Immunol. 2011;111:47–107.

    CrossRef  CAS  PubMed  Google Scholar 

  31. Ambrosino DM, Siber GR, et al. An immunodeficiency characterized by imparied antibody responses to polysaccharides. N Engl J Med. 1987;316(13):790–3.

    CrossRef  CAS  PubMed  Google Scholar 

  32. Sanders LA, Rijkers GT, Kuis W, et al. Defective antipneumococcal polysaccharide antibody response in children with recurrent respiratory tract infections. J Allergy Clin Immunol. 1993;91(1 Pt 1):110–9.

    CrossRef  CAS  PubMed  Google Scholar 

  33. Vendrell M, de Gracia J, Rodrigo MJ, et al. Antibody production deficiency with normal IgG levels in bronchiectasis of unknown etiology. Chest. 2005;127(1):197–204.

    CrossRef  CAS  PubMed  Google Scholar 

  34. Sorensen RU, Hidalgo H, Moore C, et al. Post-immunization pneumococcal antibody titers and IgG subclasses. Pediatr Pulmonol. 1996;22(3):167–73.

    CrossRef  CAS  PubMed  Google Scholar 

  35. Orange JS, Ballow M, et al. Use and interpretation of diagnostic vaccination in primary immunodeficiency: a working group report of the Basic and Clinical Immunology interest Section of the American Academy of Allergy, Asthma and Immunology. J Allergy Clin Immunol. 2012;130(s3):221–4.

    Google Scholar 

  36. WHO recommendations for the production and control of pneumococcal conjugate vaccines. WHO Technical Report Series; 2005. 927.

    Google Scholar 

  37. Vetrie D. Isolation of the defeective gene in X linked agammaglobulinaemia. J Med Genet. 1993;30(6):452–3.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  38. Howard V, Greene JM, Pahwa S, et al. The health status and quality of life in adults with X-linked agammaglobulinemia. Clin Immunol. 2006;118(2–3):201–8.

    CrossRef  CAS  PubMed  Google Scholar 

  39. Durandy A, Kracker S, et al. Primary antibody deficiencies. Nat Rev Immunol. 2013;13(7):519–33.

    CrossRef  CAS  PubMed  Google Scholar 

  40. Conley ME, Broides A, Hernandez-Trujillo V, et al. Genetic analysis of patients with defects in early B-cell development. Immunol Rev. 2005;203:216–34.

    CrossRef  CAS  PubMed  Google Scholar 

  41. Conley ME, Dobbs AK, Quintana AM, et al. Agammaglobulinemia and absent B lineage cells in a patient lacking the p85a subunit of PI3K. J Exp Med. 2012;209:463–70.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  42. De Gracia J, Rodrigo MJ, Morell F, et al. IgG subclass deficiencies associated with bronchiectasis. Am J Respir Crit Care Med. 1996;153(2):650–5.

    CrossRef  PubMed  Google Scholar 

  43. Driessen GJ, van der Burg M. Educational paper: primary antibody deficiencies. Eur J Pediatr. 2011;170(6):693–702.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  44. Geha RS, Plebani A, Notarangelo LD. CD40, CD40 ligand, and the hyper-IgM syndrome. In: Ochs HD, CIE S, Puck JM, editors. Primary immunodeficiency diseases: a molecular and genetic approach. 2nd ed. New York: Oxford University Press; 2007. p. 251–68.

    Google Scholar 

  45. Hayward AR, Levy J, Facchetti F, et al. Cholangiopathy and tumors of the pancreas, liver, and biliary tree in boys with X-linked immunodeficiency with hyper-IgM. J Immunol. 1997;158(2):977–83.

    CAS  PubMed  Google Scholar 

  46. Durandy A, Revy P, Fischer A. Hyper-immunoglobulin-M syndromes caused by an intrinsic B cell defect. Curr Opin Allergy Clin Immunol. 2003;3(6):421–5.

    CrossRef  CAS  PubMed  Google Scholar 

  47. Ferrari S, Giliani S, Insalaco A, et al. Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc Natl Acad Sci U S A. 2001;98(22):12614–9.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  48. Winkelstein JA, Marino MC, Ochs H, et al. The X-linked hyper-IgM syndrome: clinical and immunologic features of 79 patients. Medicine (Baltimore). 2003;82(6):373–84.

    CrossRef  CAS  Google Scholar 

  49. Revy P, Muto T, Levy Y, et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell. 2000;102(5):565–75.

    CrossRef  CAS  PubMed  Google Scholar 

  50. Imai K, Slupphaug G, Lee WI, et al. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol. 2003;4(10):1023–8.

    CrossRef  CAS  PubMed  Google Scholar 

  51. Ta VT, Nagaoka H, Catalan N, et al. AID mutant analyses indicate requirement for class-switch-specific cofactors. Nat Immunol. 2003;4(9):843–8.

    CrossRef  CAS  PubMed  Google Scholar 

  52. Imai K, Zhu Y, Revy P, et al. Analysis of class switch recombination and somatic hypermutation in patients affected with autosomal dominant hyper-IgM syndrome type 2. Clin Immunol. 2005;115(3):277–85.

    CrossRef  CAS  PubMed  Google Scholar 

  53. Vanhaesebroeck B, Welham MJ, Kotani K, et al. p110d, a novel phosphoinositide 3-kinase in leukocytes. Proc Natl Acad Sci U S A. 1997;94:4330–5.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chantry D, Vojtek A, Kashishian A, et al. p110d, a novel phosphatidylinositol 3-kinase catalytic subunit that associates with p85 and is expressed predominantly in leukocytes. J Biol Chem. 1997;272:19236–41.

    CrossRef  CAS  PubMed  Google Scholar 

  55. Kok K, Geering B, Vanhaesebroeck B. Regulation of phosphoinositide 3-kinase expression in health and disease. Trends Biochem Sci. 2009;34:115–27.

    CrossRef  CAS  PubMed  Google Scholar 

  56. Lucas CL, Kuehn HS, Zhao F, et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat Immunol. 2014;15:88–97.

    CrossRef  CAS  PubMed  Google Scholar 

  57. Coulter TI, Chandra A, Bacon CM, et al. Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: a large patient cohort study. J Allergy Clin Immunol. 2016. pii: S0091–6749(16)30623–6. doi:https://doi.org/10.1016/j.jaci.2016.06.021.

  58. Elkaim E, Neven B, Bruneau J, et al. Clinical and immunologic phenotype associated with activated phosphoinositide 3-kinase δ syndrome 2: a cohort study. J Allergy Clin Immunol. 2016;138(1):210–8.

    CrossRef  CAS  PubMed  Google Scholar 

  59. Schubert D, Bode C, Kenefeck R, et al. Autosomal-dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med. 2014;20(12):1410–6.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lopez-Herrera G, Tampella G, Pan-Hammarström Q, et al. Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am J Hum Genet. 2012;90(6):986–1001.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gámez-Díaz L, August D, Stepensky P, et al. The extended phenotype of LPS-responsive beige-like anchor protein (LRBA) deficiency. J Allergy Clin Immunol. 2016;137(1):223–30.

    CrossRef  PubMed  CAS  Google Scholar 

  62. Chandesris MO, Melki I, Natividad A, et al. Autosomal dominant STAT3 deficiency and hyper-IgE syndrome: molecular, cellular, and clinical features from a French national survey. Medicine (Baltimore). 2012;91(4):e1–19.

    CrossRef  CAS  PubMed Central  Google Scholar 

  63. Engelhardt K, Gertz EM, Keles S, et al. The extended clinical phenotype of 64 patients with DOCK8 deficiency. JACI. 2015;136(2):402–12.

    CAS  Google Scholar 

  64. Holland SM, DeLeo FR, Elloumi HZ, et al. STAT3 mutations in the hyper-IgE syndrome. N Engl J Med. 2007;357:1608–19.

    CrossRef  CAS  PubMed  Google Scholar 

  65. Aydin SE, Kilic SS, Aytekin C, et al. DOCK8 deficiency: clinical and immunological phenotype and treatment options – a review of 136 patients. J Clin Immunol. 2015;35(2):189–98.

    CrossRef  CAS  PubMed  Google Scholar 

  66. van den Berg JM, van Koppen E, Åhlin A, et al. Chronic granulomatous disease: the European experience. PLoS One. 2009;4(4):e5234.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  67. Bortoletto P, Lyman K, Camacho A, et al. Chronic granulomatous disease: a large, single-centre US experience. Pediatr Infect Dis J. 2015;34:1110–4.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  68. Mahdaviani SA, Mehrian P, Najafi A, et al. Pulmonary computed tomography scan findings in chronic granulomatous disease. Allergol Immunopathol (Madr). 2014;42(5):444–8.

    CrossRef  CAS  Google Scholar 

  69. Eisen DP. Mannose-binding lectin deficiency and respiratory tract infection. J Innate Immun. 2010;2(2):114–22.

    CrossRef  CAS  PubMed  Google Scholar 

  70. Fevang B, Mollnes TE, Holm AM, et al. Common variable immunodeficiency and the complement system; low mannose binding lectin levels are associated with bronchiectasis. Clin Exp Immunol. 2005;142:576–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Litzman J, Freiberger T, Grimbacher B, et al. Mannose-binding lectin gene polymorphic variants predispose to the development of bronchopulmonary complications but have no influence on other clinical and laboratory symptoms or signs of common variable immunodeficiency. Clin Exp Immunol. 2008;153:324–30.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mullighan CG, Marshall SE, Welsh KI. Mannose binding lectin polymorphisms are associated with early age of disease onset and autoimmunity in common variable immunodeficiency. Scand J Immunol. 2000;51:111–22.

    CrossRef  CAS  PubMed  Google Scholar 

  73. Kilpatrick DC, Chalmers JD, MacDonald SL, et al. Stable bronchiectasis is associated with low serum L-ficolin concentrations. Clin Respir J. 2009;3(1):29–33.

    CrossRef  CAS  PubMed  Google Scholar 

  74. Metzger ML, Michelfelder I, Goldacker S, et al. Low ficolin-2 levels in common variable immunodeficiency patients with bronchiectasis. Clin Exp Immunol. 2015;179:256–64.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  75. Barzaghi F, Passerini L, Bacchetta R. Immune dysregulation, polyendocrinopathy, enteropathy, x-linked syndrome: a paradigm of immunodeficiency with autoimmunity. Front Immunol. 2012;3:211.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  76. Takezaki S, Yamada M, Kato M, et al. Chronic mucocutaneous candidiasis caused by a gain-of-function mutation in the STAT1 DNA-binding domain. J Immunol. 2012;189:1521–6

    Google Scholar 

  77. Duraisingham SS, Buckland M, Dempster J, et al. Primary versus secondary antibody deficiency: clinical features and infection outcomes of immunoglobulin replacement. PLoS One. 2014;9(6):e100324.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  78. Savilahti E. Sulphasalazine induced immunodeficiency. Br Med J (Clin Res Ed). 1983;287(6394):759.

    CrossRef  CAS  Google Scholar 

  79. Delamere JP, Farr M, Grindulis KA. Sulphasalazine induced selective IgA deficiency in rheumatoid arthritis. Br Med J (Clin Res Ed). 1983;286(6377):1547–8.

    CrossRef  CAS  Google Scholar 

  80. Farr M, Kitas GD, Tunn EJ. Immunodeficiencies associated with sulphasalazine therapy in inflammatory arthritis. Br J Rheumatol. 1991;30(6):413–7.

    CrossRef  CAS  PubMed  Google Scholar 

  81. Snowden N, Dietch DM, Teh LS, et al. Antibody deficiency associated with gold treatment: natural history and management in 22 patients. Ann Rheum Dis. 1996;55(9):616–21.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bernatsky S, Hudson M, Suissa S. Anti-rheumatic drug use and risk of serious infections in rheumatoid arthritis. Rheumatology. 2007;46:1157–60.

    CrossRef  CAS  PubMed  Google Scholar 

  83. Cooper N, Davies EG, Thrasher AJ. Repeated courses of rituximab for autoimmune cytopenias may precipitate profound hypogammaglobulinaemia requiring replacement intravenous immunoglobulin. Br J Haematol. 2009;146:120–2.

    CrossRef  CAS  PubMed  Google Scholar 

  84. De La Torre I, Leandro MJ, Valor L, et al. Total serum immunoglobulin levels in patients with RA after multiple B-cell depletion cycles based on rituximab: relationship with B-cell kinetics. Rheumatology (Oxford). 2012;51(5):833–40.

    CrossRef  CAS  Google Scholar 

  85. Fedor ME, Rubinstein A. Effects of long-term low-dose corticosteroid therapy on humoral immunity. Ann Allergy Asthma Immunol. 2006;97(1):113–6.

    CrossRef  PubMed  Google Scholar 

  86. Ozaras N, Goksugur N, Eroglu S, et al. Carbamazepine-induced hypogammaglobulinemia. Seizure. 2012;21(3):229–31.

    CrossRef  PubMed  Google Scholar 

  87. Spickett GP, Gompels MM, Saunders PW. Hypogammaglobulinaemia with absent B lymphocytes and agranulocytosis after carbamazepine treatment. J Neurol Neurosurg Psychiatry. 1996;60(4):459.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hoshino C, Hoshi T. Carbamazepine-induced agammaglobulinaemia clinically mimicking diffuse panbronchiolitis. BMJ Case Rep. 2011;16:2011.

    Google Scholar 

  89. Pereira LF, Sanchez JF. Reversible panhypogammaglobulinemia associated with phenytoin treatment. Scand J Infect Dis. 2002;34(10):785–7.

    CrossRef  CAS  PubMed  Google Scholar 

  90. Travin M, Macris NT, Block JM, et al. Reversible common variable immunodeficiency syndrome induced by phenytoin. Arch Intern Med. 1989;149(6):1421–2.

    CrossRef  CAS  PubMed  Google Scholar 

  91. Guerre IC, Fawcett WA 4th, Redmon AH, et al. Permanent intrinsic B cell immunodeficiency caused phenytoin hypersensitivity. J Allergy Clin Immunol. 1986;77(4):603–7.

    CrossRef  Google Scholar 

  92. Eom TH, Lee HS, Jang PS, et al. Valproate-induced panhypogammaglobulinemia. Neurol Sci. 2013;34(6):1003–4.

    CrossRef  PubMed  Google Scholar 

  93. Pratt G, Goodyear O, Moss P. Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol. 2007;138(5):563–79.

    CrossRef  CAS  PubMed  Google Scholar 

  94. Nucci M, Anaissie E. Infections in patient with multiple myeloma in the era of high-dose therapy and novel agents. Clin Infect Dis. 2009;49(8):1211–25.

    CrossRef  CAS  PubMed  Google Scholar 

  95. Blimark C, Holmberg E, Ulf-Henrik M, et al. Multiple myeloma and infections: a population-based study on 9253 multiple myeloma patients. Haematologica. 2015;100(1):107–13.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  96. Savage DG, Lindenbaum J, Garrett TJ. Biphasic pattern of bacterial infection in multiple myeloma. Ann Intern Med. 1982;96(1):47–50.

    CrossRef  CAS  PubMed  Google Scholar 

  97. Morton LM, Wang SS, Devesa SS, et al. Lymphoma incidence patterns by WHO subtype in the United States, 1992-2001. Blood. 2006;107(1):265–76.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  98. Freeman JA, Crassini KR, Best OG, et al. Immunoglobulin G subclass deficiency and infection risk in 150 patients with chronic lymphocytic leukemia. Leuk Lymphoma. 2013;54(1):99–104.

    CrossRef  CAS  PubMed  Google Scholar 

  99. Griffiths H, Lea J, Bunch C, et al. Predictors of infection in chronic lymphocytic leukaemia (CLL). Clin Exp Immunol. 1992;89(3):374–7.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gunn ML, Godwin JD, Kanne JP, et al. High-resolution CT findings of bronchiolitis obliterans syndrome after hematopoietic stem cell transplantation. J Thorac Imaging. 2008;23:244–50.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  101. Tanawuttiwat T, Harindhanavudhi T. Bronchiectasis: pulmonary manifestation in chronic graft versus host disease after bone marrow transplantation. Am J Med Sci. 2009;337:292.

    CrossRef  PubMed  Google Scholar 

  102. de Jong PA, Dodd JD, Coxson HO, et al. Bronchiolitis obliterans following lung transplantation: early detection using computed tomographic scanning. Thorax. 2006;61:799–804.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  103. Morehead RS. Bronchiectasis in bone marrow transplantation. Thorax. 1997;52(4):392–3.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  104. Phatak TD, Maldjian PD. Progressive bronchiectasis as a manifestation of chronic graft versus host disease following bone marrow transplantation. Radiol Case Rep. 2015;3(1):137.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  105. Loubeyre P, Revel D, Delignette A, et al. Bronchiectasis detected with thin-section CT as predictor of chronic lung allograft rejection. Radiology. 1995;194:213–6.

    CrossRef  CAS  PubMed  Google Scholar 

  106. Pijnenburg MW, Cransberg K, Wolff E, et al. Bronchiectasis in children after renal or liver transplantation: a report of five cases. Pediatr Transplant. 2004;8:71–4.

    CrossRef  PubMed  Google Scholar 

  107. Cransberg K, Cornelissen EAM, Darvin J-C, et al. Improved outcome of pediatric kidney transplantations in the Netherlands – effect of the introduction of mycophenolate mofetil? Pediatr Transplant. 2005;9:104–11.

    CrossRef  PubMed  Google Scholar 

  108. Merkus PJ, Pijnenburg M, Cransberg K. Mycophenolate mofetil and bronchiectasis in pediatric transplant patients. Transplantation. 2006;82:1386.

    CrossRef  PubMed  Google Scholar 

  109. Rook M, Postma DS, van der Jagt EJ, et al. Mycophenolate mofetil and bronchiectasis in kidney transplant patients: a possible relationship. Transplantation. 2006;81(2):287–9.

    CrossRef  PubMed  Google Scholar 

  110. Boddana P, Webb LH, Unsworth J, et al. Hypogammaglobulinemia and bronchiectasis in mycophenolate mofetil treated renal transplant recipients: an emerging clinical phenomenon? Clin Transpl. 2011;25:417–9.

    CrossRef  CAS  Google Scholar 

  111. Broeders EN, Wissing KM, Hazzan M, et al. Evolution of immunoglobulin and mannose binding protein levels after renal transplantation: association with infectious complications. Transpl Int. 2008;21:57–64.

    CAS  PubMed  Google Scholar 

  112. Keven K, Sahin M, Kutlay S, et al. Immunoglobulin deficiency in kidney allograft recipients: comparative effects of mycophenolate mofetil and azathioprine. Transpl Infect Dis. 2003;5:181–6.

    CrossRef  CAS  PubMed  Google Scholar 

  113. Gennery AR, Cant AJ, Spickett GP, et al. Effect of immunosuppression after cardiac transplantation in early childhood on antibody response to polysaccharide antigen. Lancet. 1998;351:1778–81.

    CrossRef  CAS  PubMed  Google Scholar 

  114. Thomas B, Flet JG, Shyam R, et al. Chronic respiratory complications in pediatric heart transplant recipients. J Heart Lung Transplant. 2007;26(3):236–40.

    CrossRef  PubMed  Google Scholar 

  115. Masekela R, Anderson R, Moodley T, et al. HIV-related bronchiectasis in children: an emerging spectre in high tuberculosis burden areas. Int J Tuberc Lung Dis. 2012;16(1):114–9.

    CrossRef  CAS  PubMed  Google Scholar 

  116. Attia EF, Miller RF, Ferrand RA. Bronchiectasis and other chronic lung diseases in adolescents living with HIV. Curr Opin Infect Dis. 2017;30(1):21–30.

    PubMed  Google Scholar 

  117. Sheikh S, Madiraju K, Steiner P, et al. Bronchiectasis in pediatric AIDS. Chest. 1997;112:1202–7.

    CrossRef  CAS  PubMed  Google Scholar 

  118. Berman DM, Mafut D, Djokic B, et al. Risk factors for the development of bronchiectasis in HIV-infected children. Pediatr Pulmonol. 2007;42:871–5.

    CrossRef  PubMed  Google Scholar 

  119. Maguire G. Aust Fam Physician. 2012;41(11):842–50.

    PubMed  Google Scholar 

  120. NICE Clinical knowledge summaries. Scenario: Suspected bronchiectasis. 2016. https://cks.nice.org.uk/bronchiectasis#!scenario.

  121. Bonilla FA, Barlan IB, Chapel H, et al. International consensus document (ICON): common variable immunodeficiency disorders. J Allergy Clin Immunol Pract. 2016;4(1):38–59.

    CrossRef  PubMed  Google Scholar 

  122. Fine AD, Bridges CB, Am DG, et al. Influenza A among patients with human immunodeficiency virus: an outbreak of infection at a residential facility in New York City. Clin Infect Dis. 2001;32(12):1784–91.

    CrossRef  CAS  PubMed  Google Scholar 

  123. Madhi SA, Maskew M, Koen A, et al. Trivalent inactivated influenza vaccine in African adults infected with human immunodeficient virus: double blind, randomized clinical trial of efficacy, immunogenicity, and safety. Clin Infect Dis. 2011;52(1):128–37.

    CrossRef  CAS  PubMed  Google Scholar 

  124. Kroger AT, Sumaya CV, Pickering LK, et al. General recommendations on immunization: recommendations of the advisory committee on immunization practices (ACIP). National center for immunization and respiratory diseases. 2011. 60(RR02); 1–60.

    Google Scholar 

  125. Green book. Contraindications and special considerations. 2013. Chapter 6(v2.0): 41–8.

    Google Scholar 

  126. Bonilla FA, Bernstein IL, Khan DA, et al. Practice parameter for the diagnosis and management of primary immunodeficiency. Ann Allergy Asthma Immunol. 2005;94:S1–S63.

    CrossRef  PubMed  Google Scholar 

  127. Clinical guidelines for immunoglobulin use, second edition update, DOH UK, 01 August 2011 WHO model list of essential medicines list, 19th ed; 2015.

    Google Scholar 

  128. Edgar JDM, United Kingdom Primary Immunodeficiency network (UKPIN). Presciption of Immunoglobulin Replacement Therapy for Patients with Non-classical and Secondary Antibody Deficiency: An Analysis of Practice in the United Kingdom & Republic of Ireland. Poster. ESID Meeting Sept. 2017. Abstract number: ESID7–0146.

    Google Scholar 

  129. Stiehm ER, Keller MA, Vyas GN. Preparation and use of therapeutic anti-bodies primarily of human origin. Biologicals. 2008;36:363–74.

    CrossRef  CAS  PubMed  Google Scholar 

  130. Berger M, Jolles S, Orange JS, et al. Bioavailability of IgG administered by the subcutaneous route. J Clin Immunol. 2013;33:984–90.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lucas M, Hugh-Jones K, Welby A, et al. Immunomodulatory therapy to achieve maximum efficacy: doses, monitoring, compliance, and self-infusion at home. J Clin Immunol. 2010;30:S84–9.

    CrossRef  CAS  PubMed  Google Scholar 

  132. Bonagura VR. Using intravenous immunoglobulin (IVIG) to treat patients with primary immune deficiency disease. J Clin Immunol. 2013;33:S90–4.

    CrossRef  PubMed  CAS  Google Scholar 

  133. Lucas M, Lee M, Lortan J, et al. Infection outcomes in patients with common variable immunodeficiency disorders: relationship to immunoglobulin therapy over 22 years. J Allergy Clin Immunol. 2010;125:1354.

    CrossRef  CAS  PubMed  Google Scholar 

  134. Orange JS, Grossman WJ, Navickis RJ, et al. Impact of trough IgG on pneumonia incidence in primary immunodeficiency: a meta-analysis of clinical studies. Clin Immunol. 2010;137:21–30.

    CrossRef  CAS  PubMed  Google Scholar 

  135. Haddad E, Berger M, Wang EC, et al. Higher doses of subcutaneous IgG reduce resource utilization in patients with primary immunodeficiency. J Clin Immunol. 2012;32:281–9.

    CrossRef  CAS  PubMed  Google Scholar 

  136. Department of Health, UK. Clinical guidelines for immunoglobulin use. 2nd ed update; July 2011. https://www.gov.uk/government/publications/clinical-guidelines-for-immunoglobulin-use-second-edition-update

  137. Fischer A, Hacein-Bey Abina S, Touzot F, et al. Gene therapy for primary immunodeficiencies. Clin Genet. 2015;88(6):507–15.

    CrossRef  CAS  PubMed  Google Scholar 

  138. The Net4CGD European consortium. Gene therapy for X-linked chronic granulomatous disease. Hum Gene Ther Clin Dev. 2015;26(2):88–90.

    Google Scholar 

  139. Hacein-Bey Abina S, Gaspar HB, Blondeau J, et al. Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome. JAMA. 2015;313(15):1550–63.

    CrossRef  PubMed  CAS  Google Scholar 

  140. Quinti I, Agostini C, Tabolli S, et al. Malignancies are the major cause of death in patients with adult onset common variable immunodeficiency. Blood. 2012;120:1953–4.

    CrossRef  CAS  PubMed  Google Scholar 

  141. Resnick ES, Moshier EL, Godbold JH, et al. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood. 2012;119:1650–7.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  142. Baris S, Ercan H, Cagan HH, et al. Efficacy of intravenous immunoglobulin treatment in children with common variable immunodeficiency. J Investig Allergol Clin Immunol. 2011;21:514–21.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya I. Coulter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Coulter, T.I., Devlin, L., Downey, D., Elborn, J.S., Edgar, J.D.M. (2018). Immunodeficiency in Bronchiectasis. In: Chalmers, J., Polverino, E., Aliberti, S. (eds) Bronchiectasis. Springer, Cham. https://doi.org/10.1007/978-3-319-61452-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61452-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61451-9

  • Online ISBN: 978-3-319-61452-6

  • eBook Packages: MedicineMedicine (R0)