Stability and Delay Analysis of an Adaptive Channel-Aware Random Access Wireless Network

  • Ioannis DimitriouEmail author
  • Nikolaos Pappas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10378)


In this work, we consider an asymmetric two-user random access wireless network with interacting nodes, time-varying links and multipacket reception capabilities. The users are equipped with infinite capacity buffers where they store arriving packets that will be transmitted to a destination node. Moreover, each user employs a general transmission control protocol under which, it adapts its transmission probability based both on the state of the other user, and on the channel state information according to a Gilbert-Elliot model. We study a two-dimensional discrete time Markov chain, investigate its stability condition, and show that its steady state performance is expressed in terms of a solution of a Riemann-Hilbert boundary value problem. Moreover, for the symmetrical system, we provide closed form expressions for the average delay at each user node. Numerical results are obtained and show insights in the system performance.


Boundary value problem Random access Multipacket reception Adaptive transmission Channel aware Stability region Delay analysis Gilbert-Elliott channel 


  1. 1.
    Alliance, N.: NGMN 5G white paper. Next generation mobile networks, White paper (2015)Google Scholar
  2. 2.
    Avrachenkov, K., Nain, P., Yechiali, U.: A retrial system with two input streams and two orbit queues. Queueing Syst. 77, 1–31 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Boxma, O.: Two symmetric queues with alternating service and switching times. In: Gelenbe, E. (ed.) Performance 1984, pp. 409–431. North-Holland, Amsterdam (1984)Google Scholar
  4. 4.
    Chatzikokolakis, K., Kaloxylos, A., Spapis, P., Alonistioti, N., Zhou, C., Eichinger, J., Bulakci, Ö.: On the way to massive access in 5G: challenges and solutions for massive machine communications. In: Weichold, M., Hamdi, M., Shakir, M.Z., Abdallah, M., Karagiannidis, G.K., Ismail, M. (eds.) CrownCom 2015. LNICSSITE, vol. 156, pp. 708–717. Springer, Cham (2015). doi: 10.1007/978-3-319-24540-9_58CrossRefGoogle Scholar
  5. 5.
    Chen, Z., Pappas, N., Kountouris, M.: Energy harvesting in delay-aware cognitive shared access networks. In: IEEE ICC Workshops, Paris, France (2017)Google Scholar
  6. 6.
    Chen, Z., Pappas, N., Kountouris, M., Angelakis, V.: Throughput analysis of smart objects with delay constraints. In: IEEE 17th WoWMoM, Coimbra, Portugal (2016)Google Scholar
  7. 7.
    Cidon, H.K.I., Sidi, M.: Erasure, capture and random power level selection in multiple access systems. IEEE Trans. Commum. 36, 263–271 (1988)CrossRefGoogle Scholar
  8. 8.
    Cohen, J.W., Boxma, O.: Boundary Value Problems Queueing Systems Analysis. North Holland Publishing Company, Amsterdam (1983)zbMATHGoogle Scholar
  9. 9.
    Dimitriou, I.: A two class retrial system with coupled orbit queues. Prob. Eng. Inf. Sci. 31(2), 139–179 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dimitriou, I.: A queueing model with two types of retrial customers and paired services. Ann. Oper. Res. 238(1), 123–143 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dimitriou, I.: A retrial queue to model a two-relay cooperative wireless system with simultaneous packet reception. In: Wittevrongel, S., Phung-Duc, T. (eds.) ASMTA 2016. LNCS, vol. 9845, pp. 123–139. Springer, Cham (2016). doi: 10.1007/978-3-319-43904-4_9CrossRefzbMATHGoogle Scholar
  12. 12.
    Dimitriou, I.: A queueing system for modeling cooperative wireless networks with coupled relay nodes and synchronized packet arrivals. Perform. Eval. (2017). doi: 10.1016/j.peva.2017.04.002CrossRefGoogle Scholar
  13. 13.
    Dimitriou, I., Pappas, N.: Stable throughput and delay analysis of a random access network with queue-aware transmission. [cs.IT], pp. 1–30 (2017). arXiv:1704.02902
  14. 14.
    Ephremides, A., Hajek, B.: Information theory and communication networks: an unconsummated union. IEEE Trans. Inf. Theor. 44(6), 2416–2434 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fanous, A., Ephremides, A.: Transmission control of two-user slotted ALOHA over Gilbert-Elliott channel: stability and delay analysis. In: Proceedings of the IEEE ISIT, St. Petersburg, Russia (2011)Google Scholar
  16. 16.
    Fayolle, G., Iasnogorodski, R., Malyshev, V.: Random walks in the quarter-plane, algebraic methods, boundary value problems and applications. Springer, Berlin (2017)zbMATHGoogle Scholar
  17. 17.
    Fayolle, G., Iasnogorodski, R.: Two coupled processors: the reduction to a Riemann-Hilbert problem. Wahrscheinlichkeitstheorie 47, 325–351 (1979)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Fiems, D., Phung-Duc, T.: Light-traffic analysis of queues with limited heterogenous retrials. In: QTNA2016, ACM, Wellington (2016)Google Scholar
  19. 19.
    Gakhov, F.D.: Boundary Value Problems. Pergamon Press, Oxford (1966)CrossRefGoogle Scholar
  20. 20.
    Jeon, J., Ephremides, A.: On the stability of random multiple access with stochastic energy harvesting. IEEE J. Sel. Areas Commun. 33(3), 571–584 (2015)CrossRefGoogle Scholar
  21. 21.
    Jeon, J., Codreanu, M., Latva-aho, M., Ephremides, A.: The stability property of cognitive radio systems with imperfect sensing. IEEE J. Sel. Areas Commun. 32(3), 628–640 (2014)CrossRefGoogle Scholar
  22. 22.
    Kompella, S., Ephremides, A.: Stable throughput regions in wireless networks. Found. Trends Netw. 7(4), 235–338 (2014)CrossRefGoogle Scholar
  23. 23.
    Lau, C., Leung, C.: Capture models for mobile packet radio networks. IEEE Trans. Commun. 40, 917–925 (1992)CrossRefGoogle Scholar
  24. 24.
    Luo, W., Ephremides, A.: Stability of N interacting queues in random-access systems. IEEE Trans. Inf. Theor. 45(5), 1579–1587 (1999)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mahmoud, Q.: Cognitive Networks: Towards Self-Aware Networks. Wiley, Hoboken (2007)CrossRefGoogle Scholar
  26. 26.
    Nain, P.: Analysis of a two-node Aloha network with infinite capacity buffers. In: Hasegawa, T., Takagi, H., Takahashi, Y. (eds.) Proceedings of the International Seminar on Computer Networking and Performance Evaluation, pp. 49–63, Tokyo (1985)Google Scholar
  27. 27.
    Naware, V., Mergen, G., Tong, L.: Stability and delay of finite-user slotted ALOHA with multipacket reception. IEEE Trans. Inf. Theor. 51(7), 2636–2656 (2005)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Osseiran, A., et al.: Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun. Mag. 52(5), 26–35 (2014)CrossRefGoogle Scholar
  29. 29.
    Pappas, N., Kountouris, M., Jeon, J., Ephremides, A., Traganitis, A.: Network-level cooperation in energy harvesting wireless networks. In: IEEE GlobalSIP, pp. 383–386, Austin, TX, USA (2013)Google Scholar
  30. 30.
    Pappas, N., Kountouris, M., Jeon, J., Ephremides, A., Traganitis, A.: Effect of energy harvesting on stable throughput in cooperative relay systems. J. Commun. Netw. 18(2), 261–269 (2016)CrossRefGoogle Scholar
  31. 31.
    Resing, J.A.C., Ormeci, L.: A tandem queueing model with coupled processors. Oper. Res. Lett. 31, 383–389 (2003)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Rao, R., Ephremides, A.: On the stability of interacting queues in multiple access system. IEEE Trans. Inf. Theor. 34, 918–930 (1989)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Sidi, M., Segall, A.: Two interfering queues in packet-radio networks. IEEE Trans. Commun. 31(1), 123–129 (1983)CrossRefGoogle Scholar
  34. 34.
    Szpankowski, W.: Stability Conditions for multidimensional queuing systems with applications. Oper. Res. 36(6), 944–957 (1988)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Tsybakov, B.S., Mikhailov, V.A.: Ergodicity of a slotted ALOHA system. Probl. Peredachi Inf. 15, 73–87 (1979)MathSciNetGoogle Scholar
  36. 36.
    Van Leeuwaarden, J.S.H., Resing, J.A.C.: A tandem queue with coupled processors: computational issues. Queueing Syst. 50, 29–52 (2005)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Zorzi, M., Rao, R.: Capture and retransmission control in mobile radio. IEEE J. Sel. Areas Commun. 12, 1289–1298 (1994)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of PatrasPatrasGreece
  2. 2.Department of Science and TechnologyLinköping UniversityNorrköpingSweden

Personalised recommendations