Skip to main content

Equivalence and Lumpability of FSPNs

  • Conference paper
  • First Online:
Analytical and Stochastic Modelling Techniques and Applications (ASMTA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10378))

  • 515 Accesses


We consider equivalence relations for Fluid Stochastic Petri Nets (FSPNs). Based on equivalence relations for Stochastic Petri Nets (SPNs), which are derived from lumpability for Markov Chains, and from lumpability for certain classes of differential equations, we define an equivalence relation for FSPNs. Lumpability for the differential equations is based on a finite discretization approach and permutations of the fluid part of the FSPN.

As for other modeling formalisms, the availability of an appropriate equivalence relation allows one to aggregate sets of equivalent states into single states. This state space reduction can be exploited for a more efficient analysis of FSPNs using a discretization approach. Lumpable equivalence relations can be computed from an appropriately discretized state space of the stochastic process or directly from the FSPN.

The work of F. Bause, P. Buchholz and I. Tarasyuk has been partially supported by DFG under grant BE 1267/14-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions


  1. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl. Probab. 31, 59–75 (1994)

    Article  MathSciNet  Google Scholar 

  2. Buchholz, P.: A notion of equivalence for stochastic Petri nets. In: Michelis, G., Diaz, M. (eds.) ICATPN 1995. LNCS, vol. 935, pp. 161–180. Springer, Heidelberg (1995). doi:10.1007/3-540-60029-9_39

    Chapter  Google Scholar 

  3. Chen, D., Hong, Y., Trivedi, K.S.: Second-order stochastic fluid models with fluid-dependent flow rates. Perform. Eval. 49(1/4), 341–358 (2002)

    Article  Google Scholar 

  4. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed colored nets and symmetric modeling applications. IEEE Trans. Comput. 42(11), 1343–1360 (1993)

    Article  Google Scholar 

  5. Ciardo, G., Nicol, D.M., Trivedi, K.S.: Discrete-event simulation of fluid stochastic Petri nets. IEEE Trans. Softw. Eng. 25(2), 207–217 (1999)

    Article  Google Scholar 

  6. Coxson, P.G.: Lumpability and observability of linear systems. J. Math. Anal. Appl. 99, 435–446 (1984)

    Article  MathSciNet  Google Scholar 

  7. Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov chains. Inf. Process. Lett. 87(6), 309–315 (2003)

    Article  MathSciNet  Google Scholar 

  8. Gribaudo, M., Horváth, A.: Fluid stochastic Petri nets augmented with flush-out arcs: a transient analysis technique. IEEE Trans. Softw. Eng. 28(10), 944–955 (2002)

    Article  Google Scholar 

  9. Gribaudo, M., Sereno, M., Horváth, A., Bobbio, A.: Fluid stochastic Petri nets augmented with flush-out arcs: modelling and analysis. Discret. Event Dyn. Syst. 11(1–2), 97–117 (2001)

    Article  MathSciNet  Google Scholar 

  10. Gribaudo, M., Telek, M.: Fluid models in performance analysis. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 271–317. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72522-0_7

    Chapter  MATH  Google Scholar 

  11. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  12. Horton, G., Kulkarni, V.G., Nicol, D.M., Trivedi, K.S.: Fluid stochastic Petri nets: theory, applications, and solution techniques. Eur. J. Oper. Res. 105(1), 184–201 (1998)

    Article  Google Scholar 

  13. Iacobelli, G., Tribastone, M., Vandin, A.: Differential bisimulation for a Markovian process algebra. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 293–306. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48057-1_23

    Chapter  Google Scholar 

  14. Jasak, H.: Errror analysis and estimation for the finite volume method with applications to fluid flows. Ph.D. thesis, University of London, Department of Mechanical Engineering (1996)

    Google Scholar 

  15. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, Heidelberg (1976)

    MATH  Google Scholar 

  16. Toth, J., Li, G., Rabitz, H., Tomlin, A.S.: The effect of lumping and expanding on kinetic differential equations. SIAM J. Appl. Math. 57(6), 1531–1556 (1997)

    Article  MathSciNet  Google Scholar 

  17. Tschaikowski, M., Tribastone, M.: Exact fluid lumpability in Markovian process algebra. Theor. Comput. Sci. 538, 140–166 (2014)

    Article  MathSciNet  Google Scholar 

  18. Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov chain lumping. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12002-2_4

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Peter Buchholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bause, F., Buchholz, P., Tarasyuk, I.V., Telek, M. (2017). Equivalence and Lumpability of FSPNs. In: Thomas, N., Forshaw, M. (eds) Analytical and Stochastic Modelling Techniques and Applications. ASMTA 2017. Lecture Notes in Computer Science(), vol 10378. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61427-4

  • Online ISBN: 978-3-319-61428-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics