Skip to main content

Improving Sensor-Free Affect Detection Using Deep Learning

  • Conference paper
  • First Online:
Artificial Intelligence in Education (AIED 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10331))

Included in the following conference series:

Abstract

Affect detection has become a prominent area in student modeling in the last decade and considerable progress has been made in developing effective models. Many of the most successful models have leveraged physical and physiological sensors to accomplish this. While successful, such systems are difficult to deploy at scale due to economic and political constraints, limiting the utility of their application. Examples of “sensor-free” affect detectors that assess students based solely using data on the interaction between students and computer-based learning platforms exist, but these detectors generally have not reached high enough levels of quality to justify their use in real-time interventions. However, the classification algorithms used in these previous sensor-free detectors have not taken full advantage of the newest methods emerging in the field. The use of deep learning algorithms, such as recurrent neural networks (RNNs), have been applied to a range of other domains including pattern recognition and natural language processing with success, but have only recently been attempted in educational contexts. In this work, we construct new “deep” sensor-free affect detectors and report significant improvements over previously reported models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our dataset is made available at http://tiny.cc/affectdata.

References

  1. Pane, J.F., Griffin, B.A., McCaffrey, D.F., Karam, R.: Effectiveness of cognitive tutor algebra I at scale. Educ. Eval. Policy Anal. (2013). doi:10.3102/0162373713507480

  2. Roschelle, J., Feng, M., Murphy, R.F., Mason, C.A.: Online mathematics homework increases student achievement. AERA Open 2(4) (2016). doi:10.1177/2332858416673968

  3. Lehman, B., Matthews, M., D’Mello, S., Person, N.: What are you feeling? Investigating student affective states during expert human tutoring sessions. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 50–59. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69132-7_10

    Chapter  Google Scholar 

  4. Craig, S.D., Graesser, A., Sullins, J., Gholson, B.: Affect and learning: an exploratory look into the role of affect in learning with AutoTutor. J. Educ. Media 29(3), 241–250 (2004)

    Article  Google Scholar 

  5. Pardos, Z.A., Baker, R.S., San Pedro, M.O., Gowda, S.M.: Affective states and state tests: investigating how affect and engagement during the school year predict end-of-year learning outcomes. J. Learn. Anal. 1(1), 107–128 (2014)

    Article  Google Scholar 

  6. Pedro, M.O., Baker, R., Bowers, A., Heffernan, N.: Predicting college enrollment from student interaction with an intelligent tutoring system in middle school. In: Proceedings of the 6th International Conference on Educational Data Mining (2013)

    Google Scholar 

  7. D’Mello, S.: A time for emoting: when affect-sensitivity is and isn’t effective at promoting deep learning. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010. LNCS, vol. 6094, pp. 245–254. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13388-6_29

    Chapter  Google Scholar 

  8. Arroyo, I., Cooper, D.G., Burleson, W., Woolf, B.P., Muldner, K., Christopherson, R.: Emotion sensors go to school. AIED 200, 17–24 (2009)

    Google Scholar 

  9. Paquette, L., Rowe, J., Baker, R., Mott, B., Lester, J., DeFalco, J., Brawner, K., Sottilare, R., Georgoulas, V.: Sensor-free or sensor-full: a comparison of data modalities in multi-channel affect detection. International Educational Data Mining Society (2016)

    Google Scholar 

  10. Salmeron-Majadas, S., Santos, O.C., Boticario, J.G.: An evaluation of mouse and keyboard interaction indicators towards non-intrusive and low cost affective modeling in an educational context. Procedia Comput. Sci. 35, 691–700 (2014)

    Article  Google Scholar 

  11. Baker, R.S.J.d., Gowda, S.M., Wixon, M., Kalka, J., Wagner, A.Z., Salvi, A., Aleven, V., Kusbit, G., Ocumpaugh, J., Rossi, L.: Towards sensor-free affect detection in cognitive tutor algebra. In: Proceedings of the 5th International Conference on Educational Data Mining, pp. 126–133 (2012)

    Google Scholar 

  12. D’Mello, S., Craig, S.D., Witherspoon, A., Mcdaniel, B., Graesser, A.: Automatic detection of learner’s affect from conversational cues. User Modeling User Adapt. Interact. 18(1–2), 45–80 (2008)

    Article  Google Scholar 

  13. Sabourin, J., Mott, B., Lester, J.C.: Modeling learner affect with theoretically grounded dynamic bayesian networks. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) ACII 2011. LNCS, vol. 6974, pp. 286–295. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24600-5_32

    Chapter  Google Scholar 

  14. Ocumpaugh, J., Baker, R., Gowda, S., Heffernan, N., Heffernan, C.: Population validity for educational data mining models: a case study in affect detection. Br. J. Educ. Technol. 45(3), 487–501 (2014)

    Article  Google Scholar 

  15. Wang, Y., Heffernan, N.T., Heffernan, C.: Towards better affect detectors: effect of missing skills, class features and common wrong answers. In: Proceedings of the Fifth International Conference on Learning Analytics and Knowledge, pp. 31–35. ACM (2015)

    Google Scholar 

  16. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1(2), 270–280 (1989)

    Article  Google Scholar 

  17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  18. Cho, K., Van Merrinboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. In: Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation (2014)

    Google Scholar 

  19. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint (2014). arXiv:1412.3555

  20. Socher, R., Lin, C.C., Manning, C., Ng, A.Y.: Parsing natural scenes and natural language with recursive neural networks. In: Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 129–136 (2011)

    Google Scholar 

  21. Min, W., Vail, A.K., Frankosky, M.H., Wiggins, J.B., Boyer, K.E., Wiebe, E.N., et al.: Predicting dialogue acts for intelligent virtual agents with multimodal student interaction data. In: 9th International Conference on Educational Data Mining (2016)

    Google Scholar 

  22. Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L.J., Sohl-Dickstein, J.: Deep knowledge tracing. In: Advances in Neural Information Processing Systems, pp. 505–513 (2015)

    Google Scholar 

  23. Xiong, X., Zhao, S., Van Inwegen, E.G., Beck, J.E.: Going deeper with deep knowledge tracing. In: 9th International Conference on Educational Data Mining, pp. 545–550 (2016)

    Google Scholar 

  24. Khajah, M., Lindsey, R.V., Mozer, M.C.: How deep is knowledge tracing? In: Proceedings of the 9th International Conference on Educational Data Mining (2016)

    Google Scholar 

  25. Heffernan, N.T., Heffernan, C.L.: The ASSISTments ecosystem: building a platform that brings scientists and teachers together for minimally invasive research on human learning and teaching. Int. J. Artif. Intell. Educ. 24(4), 470–497 (2014)

    Article  MathSciNet  Google Scholar 

  26. Ocumpaugh, J., Baker, R., Rodrigo, M.M.T.: Baker rodrigo ocumpaugh monitoring protocol (BROMP) 2.0 technical and training manual. Technical report, Teachers College, New York, NY, Columbia University. Ateneo Laboratory for the Learning Sciences, Manila, Philippines (2015)

    Google Scholar 

  27. Craig, S.D., D’Mello, S., Witherspoon, A., Graesser, A.: Emote aloud during learning with autotutor: applying the facial action coding system to cognitive-affective states during learning. Cognit. Emotion 22(5), 777–788 (2008)

    Article  Google Scholar 

  28. Theano Development Team: Theano: a Python framework for fast computation of mathematical expressions (2016). http://arxiv.org/abs/1605.02688

  29. Dieleman, S., Schlüter, J., Raffel, C., Olson, E., et al.: Lasagne: first release. (2015). doi:10.5281/zenodo.27878

  30. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MATH  MathSciNet  Google Scholar 

  31. Estabrooks, A., Jo, T., Japkowicz, N.: A multiple resampling method for learning from imbalanced data sets. Comput. Intell. 20(1), 18–36 (2004)

    Article  MathSciNet  Google Scholar 

  32. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MATH  MathSciNet  Google Scholar 

  33. Hand, D.J., Till, R.J.: A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach. Learn. 45(2), 171–186 (2001)

    Article  MATH  Google Scholar 

  34. Slater, S., Ocumpaugh, J., Baker, R., Scupelli, P., Inventado, P.S., Heffernan, N.: Semantic features of math problems: relationships to student learning and engagement. In: Proceedings of the 9th International Conference on Educational Data Mining, pp. 223–230 (2016)

    Google Scholar 

Download references

Acknowledgments

We thank multiple current NSF grants (IIS-1636782, ACI-1440753, DRL-1252297, DRL-1109483, DRL-1316736, DGE-1535428 & DRL-1031398), the US Dept. of Ed (IES R305A120125 & R305C100024 and GAANN), and the ONR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony F. Botelho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Botelho, A.F., Baker, R.S., Heffernan, N.T. (2017). Improving Sensor-Free Affect Detection Using Deep Learning. In: André, E., Baker, R., Hu, X., Rodrigo, M., du Boulay, B. (eds) Artificial Intelligence in Education. AIED 2017. Lecture Notes in Computer Science(), vol 10331. Springer, Cham. https://doi.org/10.1007/978-3-319-61425-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61425-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61424-3

  • Online ISBN: 978-3-319-61425-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics