Advertisement

Brain Disorders

  • Vesselin Z. MiloushevEmail author
  • Ronald G. Blasberg
Chapter

Abstract

Brain metabolism is in itself a broad topic. Metabolism as a concept is an approach to understand the behavior of biological systems. It comprises the transient and steady-state chemical reactions and cellular machinery necessary to maintain homeostasis and dynamically respond to changing physiological environment on cellular, tissue, and organism levels. These processes permit basic cellular functions and have important consequences for pathological processes. Disorders in multiple enzymatic steps affect normal brain function and development. Manifestation of metabolic disorders in the brain is primarily due to the relatively high and constant metabolic demands. Brain metabolism is complex not only on a cellular level but also on a tissue level, with complex metabolic interactions between neurons and glia, and metabolic differences in based on brain anatomy.

References

  1. 1.
    Turner DA, Adamson DC. Neuronal-astrocyte metabolic interactions: understanding the transition into abnormal astrocytoma metabolism. J Neuropathol Exp Neurol. 2011;70:167–76.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Gropman AL. Patterns of brain injury in inborn errors of metabolism. Semin Pediatr Neurol. 2012;19:203–10.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Yoon HJ, Kim JH, Jeon TY, Yoo S-Y, Eo H. Devastating metabolic brain disorders of newborns and young infants. Radiographics. 2014;34:1257–72.PubMedCrossRefGoogle Scholar
  4. 4.
    Cheon J-E, Kim I-O, Hwang YS, Kim KJ, Wang K-C, Cho B-K, Chi JG, Kim CJ, Kim WS, Yeon KM. Leukodystrophy in children: a pictorial review of MR imaging features. Radiographics. 2002;22:461–76.PubMedCrossRefGoogle Scholar
  5. 5.
    Ibrahim M, Parmar HA, Hoefling N, Srinivasan A. Inborn errors of metabolism: combining clinical and radiologic clues to solve the mystery. Am J Roentgenol. 2014;203:W315–27.CrossRefGoogle Scholar
  6. 6.
    Tkac I, Oz G, Adriany G, Ugurbil K, Gruetter R. In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: metabolite quantification at 4T vs. 7T. Magn Reson Med. 2009;62:868–79.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Kingsley PB, Shah TC, Woldenberg R. Identification of diffuse and focal brain lesions by clinical magnetic resonance spectroscopy. NMR Biomed. 2006;19:435–62.PubMedCrossRefGoogle Scholar
  8. 8.
    Miloushev VZ, Keshari KR, Holodny AI. Hyperpolarization MRI: preclinical models and potential applications in neuroradiology. Top Magn Reson Imaging. 2016;25:31–7.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Sherry AD, Woods M. Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. Annu Rev Biomed Eng. 2008;10:391–411.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Jasanoff A. MRI contrast agents for functional molecular imaging of brain activity. Curr Opin Neurobiol. 2007;17:593–600.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Nasrallah FA, Pages G, Kuchel PW, Golay X, Chuang KH. Imaging brain deoxyglucose uptake and metabolism by glucoCEST MRI. J Cereb Blood Flow Metab. 2013;33:1270–8.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Cai K, Haris M, Singh A, Kogan F, Greenberg JH, Hariharan H, Detre JA, Reddy R. Magnetic resonance imaging of glutamate. Nat Med. 2012;18:302–6.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Statistical Parametric Mapping. The analysis of functional brain images. 1st ed. New York: Academic; 2006.Google Scholar
  14. 14.
    Lake NJ, Compton AG, Rahman S, Thorburn DR. Leigh syndrome: one disorder, more than 75 monogenic causes. Ann Neurol. 2016;79:190–203.PubMedCrossRefGoogle Scholar
  15. 15.
    Davis PC, Hoffman JC, Braun IF, Ahmann P, Krawiecki N. MR of Leigh's disease (subacute necrotizing encephalomyelopathy). Am J Neuroradiol. 1987;8:71–5.PubMedGoogle Scholar
  16. 16.
    Sperl W, Fleuren L, Freisinger P, Haack TB, Ribes A, Feichtinger RG, Rodenburg RJ, Zimmermann FA, Koch J, Rivera I, Prokisch H, Smeitink JA, Mayr JA. The spectrum of pyruvate oxidation defects in the diagnosis of mitochondrial disorders. J Inherit Metab Dis. 2015;38:391–403.PubMedCrossRefGoogle Scholar
  17. 17.
    Natarajan N, Tully HM, Chapman T. Prenatal presentation of pyruvate dehydrogenase complex deficiency. Pediatr Radiol. 2016;46:1354–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Brown G. Pyruvate dehydrogenase deficiency and the brain. Dev Med Child Neurol. 2012;54:395–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Sharma R, Sharrard MJ, Connolly DJ, Mordekar SR. Unilateral periventricular leukomalacia in association with pyruvate dehydrogenase deficiency. Dev Med Child Neurol. 2012;54:469–71.PubMedCrossRefGoogle Scholar
  20. 20.
    Jha MK, Song GJ, Lee MG, Jeoung NH, Go Y, Harris RA, Park DH, Kook H, Lee IK, Suk K. Metabolic connection of inflammatory pain: pivotal role of a pyruvate dehydrogenase kinase-pyruvate dehydrogenase-lactic acid Axis. J Neurosci. 2015;35:14353–69.PubMedCrossRefGoogle Scholar
  21. 21.
    Prasad C, Rupar T, Prasad AN. Pyruvate dehydrogenase deficiency and epilepsy. Brain and Development. 2011;33:856–65.PubMedCrossRefGoogle Scholar
  22. 22.
    Jain-Ghai S, Cameron JM, Al Maawali A, Blaser S, MacKay N, Robinson B, Raiman J, Complex II. Deficiency-a case report and review of the literature. Am J Med Genet A. 2013;161a:285–94.Google Scholar
  23. 23.
    O. Online Mendelian Inheritance in Man, Complex II, in, Johns Hopkins University, Baltimore, MD, 2016.Google Scholar
  24. 24.
    Hoekstra AS, Bayley JP. The role of complex II in disease. Biochim Biophys Acta. 2013;1827:543–51.PubMedCrossRefGoogle Scholar
  25. 25.
    Baysal BE, Maher ER. 15 YEARS OF PARAGANGLIOMA: genetics and mechanism of pheochromocytoma-paraganglioma syndromes characterized by germline SDHB and SDHD mutations. Endocr Relat Cancer. 2015;22:T71–82.PubMedCrossRefGoogle Scholar
  26. 26.
    O. Online Mendelian Inheritance in Man, MELAS, in, Johns Hopkins University, Baltimore, MD, 2016.Google Scholar
  27. 27.
    Haraguchi M, Tsujimoto H, Fukushima M, Higuchi I, Kuribayashi H, Utsumi H, Nakayama A, Hashizume Y, Hirato J, Yoshida H, Hara H, Hamano S, Kawaguchi H, Furukawa T, Miyazono K, Ishikawa F, Toyoshima H, Kaname T, Komatsu M, Chen ZS, Gotanda T, Tachiwada T, Sumizawa T, Miyadera K, Osame M, Yoshida H, Noda T, Yamada Y, Akiyama S. Targeted deletion of both thymidine phosphorylase and uridine phosphorylase and consequent disorders in mice. Mol Cell Biol. 2002;22:5212–21.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Shevell MI, Matthews PM, Scriver CR, Brown RM, Otero LJ, Legris M, Brown GK, Arnold DL. Cerebral dysgenesis and lactic acidemia: an MRI/MRS phenotype associated with pyruvate dehydrogenase deficiency. Pediatr Neurol. 1994;11:224–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Cross JH, Connelly A, Gadian DG, Kendall BE, Brown GK, Brown RM, Leonard JV. Clinical diversity of pyruvate dehydrogenase deficiency. Pediatr Neurol. 1994;10:276–83.PubMedCrossRefGoogle Scholar
  30. 30.
    Wilichowski E, Pouwels PJ, Frahm J, Hanefeld F. Quantitative proton magnetic resonance spectroscopy of cerebral metabolic disturbances in patients with MELAS. Neuropediatrics. 1999;30:256–63.PubMedCrossRefGoogle Scholar
  31. 31.
    Krageloh-Mann I, Grodd W, Schoning M, Marquard K, Nagele T, Ruitenbeek W. Proton spectroscopy in five patients with Leigh's disease and mitochondrial enzyme deficiency. Dev Med Child Neurol. 1993;35:769–76.PubMedCrossRefGoogle Scholar
  32. 32.
    Chuang CS, Lo MC, Lee KW, Liu CS. Magnetic resonance spectroscopy study in basal ganglia of patients with myoclonic epilepsy with ragged-red fibers. Neurol India. 2007;55:385–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Helman G, Caldovic L, Whitehead MT, Simons C, Brockmann K, Edvardson S, Bai R, Moroni I, Taylor JM, Haren KV, Taft RJ, Vanderver A, van der Knaap MS. Magnetic resonance imaging spectrum of succinate dehydrogenase-related infantile leukoencephalopathy. Ann Neurol. 2016;79:379–86.PubMedCrossRefGoogle Scholar
  34. 34.
    Natesan V, Mani R, Arumugam R. Clinical aspects of urea cycle dysfunction and altered brain energy metabolism on modulation of glutamate receptors and transporters in acute and chronic hyperammonemia. Biomed Pharmacother. 2016;81:192–202.PubMedCrossRefGoogle Scholar
  35. 35.
    Connelly A, Cross JH, Gadian DG, Hunter JV, Kirkham FJ, Leonard JV. Magnetic resonance spectroscopy shows increased brain glutamine in ornithine carbamoyl transferase deficiency. Pediatr Res. 1993;33:77–81.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang J, Liu Q. Cholesterol metabolism and homeostasis in the brain. Protein Cell. 2015;6:254–64.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Cerqueira NMFSA, Oliveira EF, Gesto DS, Santos-Martins D, Moreira C, Moorthy HN, Ramos MJ, Fernandes PA. Cholesterol biosynthesis: a mechanistic overview. Biochemistry. 2016;55:5483–506.PubMedCrossRefGoogle Scholar
  38. 38.
    Herman GE. Disorders of cholesterol biosynthesis: prototypic metabolic malformation syndromes. Hum Mol Genet, 12 Spec. 2003;1:R75–88.CrossRefGoogle Scholar
  39. 39.
    Tierney E, Nwokoro NA, Porter FD, Freund LS, Ghuman JK, Kelley RI. Behavior phenotype in the RSH/Smith-Lemli-Opitz syndrome. Am J Med Genet. 2001;98:191–200.PubMedCrossRefGoogle Scholar
  40. 40.
    Sikora DM, Pettit-Kekel K, Penfield J, Merkens LS, Steiner RD. The near universal presence of autism spectrum disorders in children with Smith-Lemli-Opitz syndrome. Am J Med Genet A. 2006;140:1511–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Lee RW, Conley SK, Gropman A, Porter FD, Baker EH. Brain magnetic resonance imaging findings in Smith-Lemli-Opitz syndrome. Am J Med Genet A. 2013;161a:2407–19.PubMedGoogle Scholar
  42. 42.
    Caruso PA, Poussaint TY, Tzika AA, Zurakowski D, Astrakas LG, Elias ER, Bay C, Irons MB. MRI and 1H MRS findings in Smith-Lemli-Opitz syndrome. Neuroradiology. 2004;46:3–14.PubMedCrossRefGoogle Scholar
  43. 43.
    Paine RS. The variability in manifestations of untreated patients with phenylketonuria (phenylpyruvic aciduria). Pediatrics. 1957;20:290–302.PubMedGoogle Scholar
  44. 44.
    O. Online Mendelian Inheritance in Man, Phenylketonuria, in, Johns Hopkins University, Baltimore, MD, 2016.Google Scholar
  45. 45.
    Tufekcioglu Z, Cakar A, Bilgic B, Hanagasi H, Gurvit H, Emre M. Adult-onset phenylketonuria with rapidly progressive dementia and parkinsonism. Neurocase. 2016;22:273–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Anderson PJ, Leuzzi V. White matter pathology in phenylketonuria. Mol Genet Metab. 2010;99(Suppl 1):S3–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Bodner KE, Aldridge K, Moffitt AJ, Peck D, White DA, Christ SE. A volumetric study of basal ganglia structures in individuals with early-treated phenylketonuria. Mol Genet Metab. 2012;107:302–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Christ SE, Price MH, Bodner KE, Saville C, Moffitt AJ, Peck D. Morphometric analysis of gray matter integrity in individuals with early-treated phenylketonuria. Mol Genet Metab. 2016;118:3–8.PubMedCrossRefGoogle Scholar
  49. 49.
    E.J. Novotny, Jr., M.J. Avison, N. Herschkowitz, O.A. Petroff, J.W. Prichard, M.R. Seashore, D.L. Rothman, In vivo measurement of phenylalanine in human brain by proton nuclear magnetic resonance spectroscopy, Pediatr Res, 37 (1995) 244–249.Google Scholar
  50. 50.
    Pietz J, Rupp A, Ebinger F, Rating D, Mayatepek E, Boesch C, Kreis R. Cerebral energy metabolism in phenylketonuria: findings by quantitative in vivo 31P MR spectroscopy. Pediatr Res. 2003;53:654–62.PubMedCrossRefGoogle Scholar
  51. 51.
    Horder J, Lavender T, Mendez MA, O'Gorman R, Daly E, Craig MC, Lythgoe DJ, Barker GJ, Murphy DG. Reduced subcortical glutamate/glutamine in adults with autism spectrum disorders: a [(1)H]MRS study. Transl Psychiatry. 2013;3:e279.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Christ SE, Moffitt AJ, Peck D. Disruption of prefrontal function and connectivity in individuals with phenylketonuria. Mol Genet Metab. 2010;99(Suppl 1):S33–40.PubMedCrossRefGoogle Scholar
  53. 53.
    Ficicioglu C, Dubroff JG, Thomas N, Gallagher PR, Burfield J, Hussa C, Randall R, Zhuang H. A pilot study of Fluorodeoxyglucose positron emission tomography findings in patients with phenylketonuria before and during Sapropterin supplementation. J Clin Neurol. 2013;9:151–6.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    O. Online Mendelian Inheritance in Man, MSUD, in, Johns Hopkins University, Baltimore, MD, 2016.Google Scholar
  55. 55.
    Indo Y, Akaboshi I, Nobukuni Y, Endo F, Matsuda I. Maple syrup urine disease: a possible biochemical basis for the clinical heterogeneity. Hum Genet. 1988;80:6–10.PubMedCrossRefGoogle Scholar
  56. 56.
    Brismar J, Aqeel A, Brismar G, Coates R, Gascon G, Ozand P. Maple syrup urine disease: findings on CT and MR scans of the brain in 10 infants. AJNR Am J Neuroradiol. 1990;11:1219–28.PubMedGoogle Scholar
  57. 57.
    Cavalleri F, Berardi A, Burlina AB, Ferrari F, Mavilla L. Diffusion-weighted MRI of maple syrup urine disease encephalopathy. Neuroradiology. 2002;44:499–502.PubMedCrossRefGoogle Scholar
  58. 58.
    Sato T, Muroya K, Hanakawa J, Asakura Y, Aida N, Tomiyasu M, Tajima G, Hasegawa T, Adachi M. Neonatal case of classic maple syrup urine disease: usefulness of (1) H-MRS in early diagnosis. Pediatr Int. 2014;56:112–5.PubMedCrossRefGoogle Scholar
  59. 59.
    O. Online Mendelian Inheritance in Man, Canavan Disease, in, Johns Hopkins University, Baltimore, MD, 2016.Google Scholar
  60. 60.
    Brismar J, Brismar G, Gascon G, Ozand P. Canavan disease: CT and MR imaging of the brain. AJNR Am J Neuroradiol. 1990;11:805–10.PubMedGoogle Scholar
  61. 61.
    Hiraga K, Kochi H, Hayasaka K, Kikuchi G, Nyhan WL. Defective glycine cleavage system in nonketotic hyperglycinemia. Occurrence of a less active glycine decarboxylase and an abnormal aminomethyl carrier protein. J Clin Invest. 1981;68:525–34.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    O. Online Mendelian Inheritance in Man, Nonketotic Hyperglycinemia, in, Johns Hopkins University, Baltimore, MD, 2016.Google Scholar
  63. 63.
    Mourmans J, Majoie CB, Barth PG, Duran M, Akkerman EM, Poll-The BT. Sequential MR imaging changes in Nonketotic Hyperglycinemia. Am J Neuroradiol. 2006;27:208–11.PubMedGoogle Scholar
  64. 64.
    Elsea SH, Juyal RC, Jiralerspong S, Finucane BM, Pandolfo M, Greenberg F, Baldini A, Stover P, Patel PI. Haploinsufficiency of cytosolic serine hydroxymethyltransferase in the Smith-Magenis syndrome. Am J Hum Genet. 1995;57:1342–50.PubMedPubMedCentralGoogle Scholar
  65. 65.
    O. Online Mendelian Inheritance in Man, Smith-Magenis, in, Johns Hopkins University, Baltimore, MD, 2016.Google Scholar
  66. 66.
    Capra V, Biancheri R, Morana G, Striano P, Novara F, Ferrero GB, Boeri L, Celle ME, Mancardi MM, Zuffardi O, Parrini E, Guerrini R. Periventricular nodular heterotopia in Smith-Magenis syndrome. Am J Med Genet A. 2014;164a:3142–7.PubMedCrossRefGoogle Scholar
  67. 67.
    O. Online Mendelian Inheritance in Man, Isovaleric Acidemia, in, Johns Hopkins University, Baltimore, MD, 2016.Google Scholar
  68. 68.
    Wani NA, Qureshi UA, Jehangir M, Ahmad K, Hussain Z. Atypical MR lenticular signal change in infantile isovaleric acidemia. Indian J Radiol Imaging. 2016;26:131–4.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    O. Online Mendelian Inheritance in Man, Propionic Acidemia, in, Johns Hopkins University, Baltimore, MD, 2016.Google Scholar
  70. 70.
    Bergman AJ, Van der Knaap MS, Smeitink JA, Duran M, Dorland L, Valk J, Poll-The BT. Magnetic resonance imaging and spectroscopy of the brain in propionic acidemia: clinical and biochemical considerations. Pediatr Res. 1996;40:404–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Chemelli AP, Schocke M, Sperl W, Trieb T, Aichner F, Felber S. Magnetic resonance spectroscopy (MRS) in five patients with treated propionic acidemia. J Magn Reson Imaging. 2000;11:596–600.PubMedCrossRefGoogle Scholar
  72. 72.
    O. Online Mendelian Inheritance in Man, Methylmalonic Acidemia, in, Johns Hopkins University, Baltimore, MD, 2016.Google Scholar
  73. 73.
    Radmanesh A, Zaman T, Ghanaati H, Molaei S, Robertson RL, Zamani AA. Methylmalonic acidemia: brain imaging findings in 52 children and a review of the literature. Pediatr Radiol. 2008;38:1054–61.PubMedCrossRefGoogle Scholar
  74. 74.
    Baker EH, Sloan JL, Hauser NS, Gropman AL, Adams DR, Toro C, Manoli I, Venditti CP. MRI characteristics of globus pallidus infarcts in isolated methylmalonic acidemia. AJNR Am J Neuroradiol. 2015;36:194–201.PubMedCrossRefGoogle Scholar
  75. 75.
    Gao Y, Guan WY, Wang J, Zhang YZ, Li YH, Han LS. Fractional anisotropy for assessment of white matter tracts injury in methylmalonic acidemia. Chin Med J. 2009;122:945–9.PubMedGoogle Scholar
  76. 76.
    Takeuchi M, Harada M, Matsuzaki K, Hisaoka S, Nishitani H, Mori K. Magnetic resonance imaging and spectroscopy in a patient with treated methylmalonic acidemia. J Comput Assist Tomogr. 2003;27:547–51.PubMedCrossRefGoogle Scholar
  77. 77.
    Weller S, Rosewich H, Gartner J. Cerebral MRI as a valuable diagnostic tool in Zellweger spectrum patients. J Inherit Metab Dis. 2008;31:270–80.PubMedCrossRefGoogle Scholar
  78. 78.
    Rosewich H, Dechent P, Krause C, Ohlenbusch A, Brockmann K, Gartner J. Diagnostic and prognostic value of in vivo proton MR spectroscopy for Zellweger syndrome spectrum patients. J Inherit Metab Dis. 2016;Google Scholar
  79. 79.
    Groenendaal F, Bianchi MC, Battini R, Tosetti M, Boldrini A, de Vries LS, Cioni G. Proton magnetic resonance spectroscopy (1H-MRS) of the cerebrum in two young infants with Zellweger syndrome. Neuropediatrics. 2001;32:23–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Eichler FS, Barker PB, Cox C, Edwin D, Ulug AM, Moser HW, Raymond GV. Proton MR spectroscopic imaging predicts lesion progression on MRI in X-linked adrenoleukodystrophy. Neurology. 2002;58:901–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Salsano E, Marotta G, Manfredi V, Giovagnoli AR, Farina L, Savoiardo M, Pareyson D, Benti R, Uziel G. Brain fluorodeoxyglucose PET in adrenoleukodystrophy. Neurology. 2014;83:981–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Nishio H, Kodama S, Tsubota T, Takumi T, Takahashi T, Yokoyama S, Matsuo T. Adrenoleukodystrophy without adrenal insufficiency and its magnetic resonance imaging. J Neurol. 1985;232:265–70.PubMedCrossRefGoogle Scholar
  83. 83.
    O. Online Mendelian Inheritance in Man, Gaucher Disease Type I, in, Johns Hopkins University, Baltimore, MD, 2016.Google Scholar
  84. 84.
    Mercimek-Mahmutoglu S, Gruber S, Rolfs A, Stadlbauer A, Woeber C, Kurnik P, Voigtlaender T, Moser E, Stoeckler-Ipsiroglu S. Neurological and brain MRS findings in patients with Gaucher disease type 1. Mol Genet Metab. 2007;91:390–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Holmay MJ, Terpstra M, Coles LD, Mishra U, Ahlskog M, Oz G, Cloyd JC, Tuite PJ. N-Acetylcysteine boosts brain and blood glutathione in Gaucher and Parkinson diseases. Clin Neuropharmacol. 2013;36:103–6.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Davies EH, Seunarine KK, Banks T, Clark CA, Vellodi A. Brain white matter abnormalities in paediatric Gaucher type I and type III using diffusion tensor imaging. J Inherit Metab Dis. 2011;34:549–53.PubMedCrossRefGoogle Scholar
  87. 87.
    Abdel Razek AA, Abd El-Gaber N, Abdalla A, Fathy A, Azab A, Rahman AA. Apparent diffusion coefficient Vale of the brain in patients with Gaucher's disease type II and type III. Neuroradiology. 2009;51:773–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Reider-Grosswasser I, Bornstein N. CT and MRI in late-onset metachromatic leukodystrophy. Acta Neurol Scand. 1987;75:64–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Kruse B, Hanefeld F, Christen HJ, Bruhn H, Michaelis T, Hanicke W, Frahm J. Alterations of brain metabolites in metachromatic leukodystrophy as detected by localized proton magnetic resonance spectroscopy in vivo. J Neurol. 1993;241:68–74.PubMedCrossRefGoogle Scholar
  90. 90.
    Assadi M, Wang DJ, Velazquez-Rodriquez Y, Leone P. Multi-voxel 1H-MRS in metachromatic Leukodystrophy. J Cent Nerv Syst Dis. 2013;5:25–30.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Menzies DG, Campbell IW, Kean DM. Magnetic resonance imaging in Fabry's disease. J Neurol Neurosurg Psychiatry. 1988;51:1240–1.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Moore DF, Altarescu G, Barker WC, Patronas NJ, Herscovitch P, Schiffmann R. White matter lesions in Fabry disease occur in 'prior' selectively hypometabolic and hyperperfused brain regions. Brain Res Bull. 2003;62:231–40.PubMedCrossRefGoogle Scholar
  93. 93.
    Korsholm K, Feldt-Rasmussen U, Granqvist H, Hojgaard L, Bollinger B, Rasmussen AK, Law I. Positron emission tomography and magnetic resonance imaging of the brain in Fabry disease: a Nationwide, long-time, prospective follow-up. PLoS One. 2015;10:e0143940.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Tedeschi G, Bonavita S, Banerjee TK, Virta A, Schiffmann R. Diffuse central neuronal involvement in Fabry disease: a proton MRS imaging study. Neurology. 1999;52:1663–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Vance JE. Lipid imbalance in the neurological disorder, Niemann-pick C disease. FEBS Lett. 2006;580:5518–24.PubMedCrossRefGoogle Scholar
  96. 96.
    O. Online Mendelian Inheritance in Man, Niemann Pick Disease, in, Johns Hopkins University, Baltimore, MD, 2016.Google Scholar
  97. 97.
    D'Amico A, Sibilio M, Caranci F, Bartiromo F, Taurisano R, Balivo F, Melis D, Parenti G, Cirillo S, Elefante R, Brunetti A. Type a niemann-pick disease. Description of three cases with delayed myelination, Neuroradiol J. 2008;21:309–15.PubMedGoogle Scholar
  98. 98.
    Grau AJ, Brandt T, Weisbrod M, Niethammer R, Forsting M, Cantz M, Vanier MT, Harzer K. Adult Niemann-pick disease type C mimicking features of multiple sclerosis. J Neurol Neurosurg Psychiatry. 1997;63:552.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Masingue M, Adanyeguh I, Nadjar Y, Sedel F, Galanaud D, Mochel F. Evolution of structural neuroimaging biomarkers in a series of adult patients with Niemann-pick type C under treatment. Orphanet J Rare Dis. 2017;12:22.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Demaerel P, Wilms G, Verdru P, Carton H, Baert AL. MR findings in globoid cell leucodystrophy. Neuroradiology. 1990;32:520–2.PubMedCrossRefGoogle Scholar
  101. 101.
    Jones BV, Barron TF, Towfighi J. Optic nerve enlargement in Krabbe's disease. AJNR Am J Neuroradiol. 1999;20:1228–31.PubMedGoogle Scholar
  102. 102.
    Kang PB, Hunter JV, Kaye EM. Lactic acid elevation in extramitochondrial childhood neurodegenerative diseases. J Child Neurol. 2001;16:657–60.PubMedCrossRefGoogle Scholar
  103. 103.
    Zarifi MK, Tzika AA, Astrakas LG, Poussaint TY, Anthony DC, Darras BT. Magnetic resonance spectroscopy and magnetic resonance imaging findings in Krabbe's disease. J Child Neurol. 2001;16:522–6.PubMedCrossRefGoogle Scholar
  104. 104.
    O. Online Mendelian Inheritance in Man, Tay-Sachs Disease, in, Johns Hopkins University, Baltimore, MD, 2016.Google Scholar
  105. 105.
    Mugikura S, Takahashi S, Higano S, Kurihara N, Kon K, Sakamoto K. MR findings in Tay-Sachs disease. J Comput Assist Tomogr. 1996;20:551–5.PubMedCrossRefGoogle Scholar
  106. 106.
    Jamrozik Z, Lugowska A, Golebiowski M, Krolicki L, Maczewska J, Kuzma-Kozakiewicz M. Late onset GM2 gangliosidosis mimicking spinal muscular atrophy. Gene. 2013;527:679–82.PubMedCrossRefGoogle Scholar
  107. 107.
    Aydin K, Bakir B, Tatli B, Terzibasioglu E, Ozmen M. Proton MR spectroscopy in three children with Tay-Sachs disease. Pediatr Radiol. 2005;35:1081–5.PubMedCrossRefGoogle Scholar
  108. 108.
    Wraith JE, Jones S. Mucopolysaccharidosis type I. Pediatr Endocrinol Rev. 2014;12(Suppl 1):102–6.PubMedGoogle Scholar
  109. 109.
    Kosuga M, Mashima R, Hirakiyama A, Fuji N, Kumagai T, Seo JH, Nikaido M, Saito S, Ohno K, Sakuraba H, Okuyama T. Molecular diagnosis of 65 families with mucopolysaccharidosis type II (Hunter syndrome) characterized by 16 novel mutations in the IDS gene: genetic, pathological, and structural studies on iduronate-2-sulfatase. Mol Genet Metab. 2016;118:190–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Reichert R, Campos LG, Vairo F, de Souza CF, Perez JA, Duarte JA, Leiria FA, Anes M, Vedolin LM. Neuroimaging findings in patients with Mucopolysaccharidosis: what you really need to know. Radiographics. 2016;36:1448–62.PubMedCrossRefGoogle Scholar
  111. 111.
    Takahashi Y, Sukegawa K, Aoki M, Ito A, Suzuki K, Sakaguchi H, Watanabe M, Isogai K, Mizuno S, Hoshi H, Kuwata K, Tomatsu S, Kato S, Ito T, Kondo N, Orii T. Evaluation of accumulated mucopolysaccharides in the brain of patients with mucopolysaccharidoses by (1)H-magnetic resonance spectroscopy before and after bone marrow transplantation. Pediatr Res. 2001;49:349–55.PubMedCrossRefGoogle Scholar
  112. 112.
    Shapiro E, Guler OE, Rudser K, Delaney K, Bjoraker K, Whitley C, Tolar J, Orchard P, Provenzale J, Thomas KM. An exploratory study of brain function and structure in mucopolysaccharidosis type I: long term observations following hematopoietic cell transplantation (HCT). Mol Genet Metab. 2012;107:116–21.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Shimoda-Matsubayashi S, Kuru Y, Sumie H, Ito T, Hattori N, Okuma Y, Mizuno Y. MRI findings in the mild type of mucopolysaccharidosis II (Hunter's syndrome). Neuroradiology. 1990;32:328–30.PubMedCrossRefGoogle Scholar
  114. 114.
    Quigley H, Colloby SJ, O'Brien JT. PET imaging of brain amyloid in dementia: a review. Int J Geriatr Psychiatry. 2011;26:991–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Morys J, Bobek-Billewicz B, Dziewiatkowski J, Bidzan L, Ussorowska D, Narklewicz O. Changes in the volume of temporal lobe structures related to Alzheimer's type dementia. Folia Neuropathol. 2002;40:47–56.PubMedGoogle Scholar
  116. 116.
    Salmon E. Functional brain imaging applications to differential diagnosis in the dementias. Curr Opin Neurol. 2002;15:439–44.PubMedCrossRefGoogle Scholar
  117. 117.
    Mazziotta JC, Frackowiak RS, Phelps ME. The use of positron emission tomography in the clinical assessment of dementia. Semin Nucl Med. 1992;22:233–46.PubMedCrossRefGoogle Scholar
  118. 118.
    Salmon E, Gregoire MC, Delfiore G, Lemaire C, Degueldre C, Franck G, Comar D. Combined study of cerebral glucose metabolism and [11C]methionine accumulation in probable Alzheimer's disease using positron emission tomography. J Cereb Blood Flow Metab. 1996;16:399–408.PubMedCrossRefGoogle Scholar
  119. 119.
    Bohnen NI, Djang DS, Herholz K, Anzai Y, Minoshima S. Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature. J Nucl Med. 2012;53:59–71.PubMedCrossRefGoogle Scholar
  120. 120.
    Kato T, Inui Y, Nakamura A, Ito K. Brain fluorodeoxyglucose (FDG) PET in dementia. Ageing Res Rev. 2016;30:73–84.PubMedCrossRefGoogle Scholar
  121. 121.
    Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergstrom M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Langstrom B. Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound-B. Ann Neurol. 2004;55:306–19.PubMedCrossRefGoogle Scholar
  122. 122.
    Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR, LaRossa GN, Spinner ML, Klunk WE, Mathis CA, DeKosky ST, Morris JC, Holtzman DM. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol. 2006;59:512–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Ewers M, Sperling RA, Klunk WE, Weiner MW, Hampel H. Neuroimaging markers for the prediction and early diagnosis of Alzheimer's disease dementia. Trends Neurosci. 2011;34:430–42.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, Pontecorvo MJ, Hefti F, Carpenter AP, Flitter ML, Krautkramer MJ, Kung HF, Coleman RE, Doraiswamy PM, Fleisher AS, Sabbagh MN, Sadowsky CH, Reiman EP, Zehntner SP, Skovronsky DM. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305:275–83.PubMedCrossRefGoogle Scholar
  125. 125.
    Fleisher AS, Chen K, Liu X, Roontiva A, Thiyyagura P, Ayutyanont N, Joshi AD, Clark CM, Mintun MA, Pontecorvo MJ, Doraiswamy PM, Johnson KA, Skovronsky DM, Reiman EM. Using positron emission tomography and florbetapir F18 to image cortical amyloid in patients with mild cognitive impairment or dementia due to Alzheimer disease. Arch Neurol. 2011;68:1404–11.PubMedCrossRefGoogle Scholar
  126. 126.
    Dani M, Brooks DJ, Edison P. Tau imaging in neurodegenerative diseases. Eur J Nucl Med Mol Imaging. 2016;43:1139–50.PubMedCrossRefGoogle Scholar
  127. 127.
    Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W, Czernin J, Rapoport SI, Pietrini P, Alexander GE, Schapiro MB, Jagust WJ, Hoffman JM, Welsh-Bohmer KA, Alavi A, Clark CM, Salmon E, de Leon MJ, Mielke R, Cummings JL, Kowell AP, Gambhir SS, Hoh CK, Phelps ME. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA. 2001;286:2120–7.PubMedCrossRefGoogle Scholar
  128. 128.
    Sperling R. Potential of functional MRI as a biomarker in early Alzheimer's disease. Neurobiol Aging. 2011;32(Suppl 1):S37–43.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Bondi MW, Houston WS, Eyler LT, Brown GG. fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology. 2005;64:501–8.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Smailagic N, Vacante M, Hyde C, Martin S, Ukoumunne O, Sachpekidis C. (1)(8)F-FDG PET for the early diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2015;1:Cd010632.PubMedGoogle Scholar
  131. 131.
    Zhang S, Smailagic N, Hyde C, Noel-Storr AH, Takwoingi Y, McShane R, Feng J. (11)C-PIB-PET for the early diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2014;1:Cd010386.Google Scholar
  132. 132.
    Leenders KL, Salmon EP, Tyrrell P, Perani D, Brooks DJ, Sager H, Jones T, Marsden CD, Frackowiak RS. The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson's disease. Arch Neurol. 1990;47:1290–8.PubMedCrossRefGoogle Scholar
  133. 133.
    Sixel-Doring F, Liepe K, Mollenhauer B, Trautmann E, Trenkwalder C. The role of 123I-FP-CIT-SPECT in the differential diagnosis of Parkinson and tremor syndromes: a critical assessment of 125 cases. J Neurol. 2011;258:2147–54.PubMedCrossRefGoogle Scholar
  134. 134.
    de la Fuente-Fernandez R, Sossi V, McCormick S, Schulzer M, Ruth TJ, Stoessl AJ. Visualizing vesicular dopamine dynamics in Parkinson's disease. Synapse. 2009;63:713–6.PubMedCrossRefGoogle Scholar
  135. 135.
    Marie RM, Barre L, Rioux P, Allain P, Lechevalier B, Baron JC. PET imaging of neocortical monoaminergic terminals in Parkinson's disease. J Neural Transm Park Dis Dement Sect. 1995;9:55–71.PubMedCrossRefGoogle Scholar
  136. 136.
    Garnett ES, Firnau G, Nahmias C. Dopamine visualized in the basal ganglia of living man. Nature. 1983;305:137–8.PubMedCrossRefGoogle Scholar
  137. 137.
    Broussolle E, Dentresangle C, Landais P, Garcia-Larrea L, Pollak P, Croisile B, Hibert O, Bonnefoi F, Galy G, Froment JC, Comar D. The relation of putamen and caudate nucleus 18F-Dopa uptake to motor and cognitive performances in Parkinson's disease. J Neurol Sci. 1999;166:141–51.PubMedCrossRefGoogle Scholar
  138. 138.
    Cropley VL, Fujita M, Bara-Jimenez W, Brown AK, Zhang XY, Sangare J, Herscovitch P, Pike VW, Hallett M, Nathan PJ, Innis RB. Pre- and post-synaptic dopamine imaging and its relation with frontostriatal cognitive function in Parkinson disease: PET studies with [11C]NNC 112 and [18F]FDOPA. Psychiatry Res. 2008;163:171–82.PubMedCrossRefGoogle Scholar
  139. 139.
    Pavese N, Evans AH, Tai YF, Hotton G, Brooks DJ, Lees AJ, Piccini P. Clinical correlates of levodopa-induced dopamine release in Parkinson disease: a PET study. Neurology. 2006;67:1612–7.PubMedCrossRefGoogle Scholar
  140. 140.
    José López-Sendón MAM, Yébenes JG d. Drug induced parkinsonism. Expert Opin Drug Saf. 2013;12:487–96.PubMedCrossRefGoogle Scholar
  141. 141.
    Yébenes MAMaJGd. Drug-induced parkinsonism. Expert Opin Drug Saf. 2006;5:759–71.PubMedCrossRefGoogle Scholar
  142. 142.
    Burn DJ, Brooks DJ. Nigral dysfunction in drug-induced parkinsonism: an 18F-dopa PET study. Neurology. 1993;43:552–6.PubMedCrossRefGoogle Scholar
  143. 143.
    Ghaemi M, Hilker R, Rudolf J, Sobesky J, Heiss WD. Differentiating multiple system atrophy from Parkinson's disease: contribution of striatal and midbrain MRI volumetry and multi-tracer PET imaging. J Neurol Neurosurg Psychiatry. 2002;73:517–23.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol. 2006;5:64–74.PubMedCrossRefGoogle Scholar
  145. 145.
    van Harten B, de Leeuw FE, Weinstein HC, Scheltens P, Biessels GJ. Brain imaging in patients with diabetes: a systematic review. Diabetes Care. 2006;29:2539–48.PubMedCrossRefGoogle Scholar
  146. 146.
    Last D, Alsop DC, Abduljalil AM, Marquis RP, de Bazelaire C, Hu K, Cavallerano J, Novak V. Global and regional effects of type 2 diabetes on brain tissue volumes and cerebral vasoreactivity. Diabetes Care. 2007;30:1193–9.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Baker LD, Cross DJ, Minoshima S, Belongia D, Watson GS, Craft S. Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch Neurol. 2011;68:51–7.PubMedCrossRefGoogle Scholar
  148. 148.
    Luchsinger JA, Small S, Biessels GJ. Should we target insulin resistance to prevent dementia due to Alzheimer disease? Arch Neurol. 2011;68:17–8.PubMedCrossRefGoogle Scholar
  149. 149.
    Cardoso de Almeida JR, Phillips ML. Distinguishing between unipolar depression and bipolar depression: current and future clinical and neuroimaging perspectives. Biol Psychiatry. 2013;73:111–8.PubMedCrossRefGoogle Scholar
  150. 150.
    Phillips ML, Swartz HA. A critical appraisal of neuroimaging studies of bipolar disorder: toward a new conceptualization of underlying neural circuitry and a road map for future research. Am J Psychiatry. 2014;171:829–43.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Oxenkrug GF. Tryptophan–Kynurenine metabolism as a common mediator of genetic and environmental impacts in major depressive disorder: the serotonin hypothesis revisited 40 years later. Isr J Psychiatry Relat Sci. 2010;47:56–63.PubMedPubMedCentralGoogle Scholar
  152. 152.
    Drevets WC, Videen TO, Price JL, Preskorn SH, Carmichael ST, Raichle ME. A functional anatomical study of unipolar depression. J Neurosci. 1992;12:3628–41.PubMedGoogle Scholar
  153. 153.
    Drevets WC, Price JL, Bardgett ME, Reich T, Todd RD, Raichle ME. Glucose metabolism in the amygdala in depression: relationship to diagnostic subtype and plasma cortisol levels. Pharmacol Biochem Behav. 2002;71:431–47.PubMedCrossRefGoogle Scholar
  154. 154.
    Ressler KJ, Mayberg HS. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci. 2007;10:1116–24.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Wu J, Buchsbaum MS, Gillin JC, Tang C, Cadwell S, Wiegand M, Najafi A, Klein E, Hazen K, Bunney WE Jr, Fallon JH, Keator D. Prediction of antidepressant effects of sleep deprivation by metabolic rates in the ventral anterior cingulate and medial prefrontal cortex. Am J Psychiatry. 1999;156:1149–58.PubMedGoogle Scholar
  156. 156.
    Fu CH, Steiner H, Costafreda SG. Predictive neural biomarkers of clinical response in depression: a meta-analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies. Neurobiol Dis. 2013;52:75–83.PubMedCrossRefGoogle Scholar
  157. 157.
    McGrath CL, Kelley ME, Holtzheimer PE, Dunlop BW, Craighead WE, Franco AR, Craddock RC, Mayberg HS. Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiat. 2013;70:821–9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Memorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations